Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors.

[1]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[2]  J. Ballesteros,et al.  The first transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle. , 2000, Biochemistry.

[3]  J. Ballesteros,et al.  Dopamine D4/D2 receptor selectivity is determined by A divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. , 1999, Molecular pharmacology.

[4]  J. Ballesteros,et al.  Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: contributions of the second membrane-spanning segment. , 1999, Biochemistry.

[5]  J. Ballesteros,et al.  A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice. , 1998, Biochemistry.

[6]  A. Karlin,et al.  Substituted-cysteine accessibility method. , 1998, Methods in enzymology.

[7]  J. Falke,et al.  Cysteine and Disulfide Scanning Reveals a Regulatory α-Helix in the Cytoplasmic Domain of the Aspartate Receptor* , 1997, The Journal of Biological Chemistry.

[8]  K. Neve,et al.  Constitutive activity of a chimeric D2/D1 dopamine receptor. , 1997, Molecular pharmacology.

[9]  H Weinstein,et al.  Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor , 1997, The EMBO journal.

[10]  B. Roth,et al.  Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine2A receptors. , 1997, Molecular pharmacology.

[11]  J. Javitch,et al.  Constitutive Activation of the β2 Adrenergic Receptor Alters the Orientation of Its Sixth Membrane-spanning Segment* , 1997, The Journal of Biological Chemistry.

[12]  P. Strange,et al.  Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors , 1997, British journal of pharmacology.

[13]  Y. Gerchman,et al.  Histidine 225, a Residue of the NhaA-Na+/H+ Antiporter of Escherichia coli Is Exposed and Faces the Cell Exterior* , 1997, The Journal of Biological Chemistry.

[14]  A. Karlin,et al.  Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit. , 1995, Biochemistry.

[15]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[16]  J. Ballesteros,et al.  Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. , 1996, Biochemistry.

[17]  J. Javitch,et al.  Differentiating dopamine D2 ligands by their sensitivities to modification of the cysteine exposed in the binding-site crevice. , 1996, Molecular pharmacology.

[18]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[19]  S. Rees,et al.  Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. , 1996, BioTechniques.

[20]  J. Javitch,et al.  Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice. , 1995, Biochemistry.

[21]  B. Kobilka,et al.  Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes. , 1995, The Journal of biological chemistry.

[22]  M. Akabas,et al.  Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. , 1995, Biophysical journal.

[23]  H. Akil,et al.  Hydrophobic Residues of the D2 Dopamine Receptor Are Important for Binding and Signal Transduction , 1995, Journal of neurochemistry.

[24]  B. Kobilka Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. , 1995, Analytical biochemistry.

[25]  A. Brown,et al.  Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels. , 1995, Biophysical journal.

[26]  Jonathan A Javitch,et al.  Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method , 1995, Neuron.

[27]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[28]  A. Karlin,et al.  Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit , 1994, Neuron.

[29]  A. Karlin,et al.  Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. , 1994, Biochemistry.

[30]  M. Akabas,et al.  Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. , 1994, The Journal of biological chemistry.

[31]  C. Strader,et al.  Structure and function of G protein-coupled receptors. , 1994, Annual review of biochemistry.

[32]  H. Jung,et al.  Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. , 1993, Biochemistry.

[33]  M. Akabas,et al.  Amino acids lining the channel of the gamma-aminobutyric acid type A receptor identified by cysteine substitution. , 1993, The Journal of biological chemistry.

[34]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[35]  R. Lefkowitz,et al.  A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. , 1993, The Journal of biological chemistry.

[36]  A. Karlin,et al.  Acetylcholine receptor channel structure probed in cysteine-substitution mutants. , 1992, Science.

[37]  H. Akil,et al.  Site-directed mutagenesis of the human dopamine D2 receptor. , 1992, European journal of pharmacology.

[38]  K. Neve,et al.  Contributions of Conserved Serine Residues to the Interactions of Ligands with Dopamine D2 Receptors , 1992, Journal of Neurochemistry.

[39]  J. Falke,et al.  Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies. , 1992, Biophysical journal.

[40]  H. Khorana,et al.  Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. , 1990, Science.

[41]  A. Finkelstein,et al.  Alteration of the pH-dependent ion selectivity of the colicin E1 channel by site-directed mutagenesis. , 1990, The Journal of biological chemistry.

[42]  C. Strader,et al.  Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. , 1989, The Journal of biological chemistry.

[43]  C. Levinthal,et al.  Site‐directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation , 1989, Proteins.

[44]  C. Strader,et al.  Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. , 1988, The Journal of biological chemistry.

[45]  J. Shafer,et al.  Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. , 1986, Biochemistry.

[46]  P. Seeman Brain dopamine receptors. , 1980, Pharmacological reviews.