Genomic analysis of Anderson typing phages of Salmonella Typhimrium: towards understanding the basis of bacteria-phage interaction

[1]  S. Casjens,et al.  Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology , 2022, Microbiology and molecular biology reviews : MMBR.

[2]  S. Casjens,et al.  The small genome, virulent, non-contractile tailed bacteriophages that infect Enterobacteriales hosts. , 2022, Virology.

[3]  Evelien M. Adriaenssens,et al.  Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation , 2021, PHAGE.

[4]  Martha R. J. Clokie,et al.  INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. , 2021, PHAGE.

[5]  A. Toussaint,et al.  PHROG: families of prokaryotic virus proteins clustered using remote homology , 2021, NAR genomics and bioinformatics.

[6]  B. Orzechowska,et al.  Characterisation of Phage Susceptibility Variation in Salmonella enterica Serovar Typhimurium DT104 and DT104b , 2021, Microorganisms.

[7]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[8]  G. Węgrzyn,et al.  Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains , 2020, International journal of molecular sciences.

[9]  S. Casjens,et al.  Genome analysis of Salmonella enterica serovar Typhimurium bacteriophage L, indicator for StySA (StyLT2III) restriction-modification system action , 2020, bioRxiv.

[10]  S. Casjens,et al.  Genome Sequence of Salmonella enterica Serovar Typhimurium Bacteriophage MG40 , 2020, Microbiology Resource Announcements.

[11]  A. Kropinski,et al.  VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses , 2020, bioRxiv.

[12]  M. Mohammed,et al.  Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis , 2020, One Health Outlook.

[13]  M. Vignaud,et al.  Whole-Genome Sequences of Two Salmonella enterica Serovar Dublin Strains That Harbor the viaA, viaB, and ompB Loci of the Vi Antigen , 2019, Microbiology Resource Announcements.

[14]  Jun Liu,et al.  Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography , 2019, Nature Microbiology.

[15]  M. Vignaud,et al.  Draft Genome Sequences of Salmonella enterica subsp. enterica Serovar Dublin Strains from St. Nectaire and Morbier Cheeses Characterized by Multilocus Variable-Number Tandem-Repeat Analysis Profiles Associated with Two Fatal Outbreaks in France , 2019, Microbiology Resource Announcements.

[16]  Christina Backes,et al.  PLSDB: a resource of complete bacterial plasmids , 2018, Nucleic Acids Res..

[17]  Daniel Gautheret,et al.  CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins , 2018, Nucleic Acids Res..

[18]  M. Mohammed Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium? , 2017, BMC Research Notes.

[19]  P. Leekitcharoenphon,et al.  The invasome of Salmonella Dublin as revealed by whole genome sequencing , 2017, BMC Infectious Diseases.

[20]  S. Casjens,et al.  Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. , 2016, Virology.

[21]  B. Koskella,et al.  Assessing Illumina technology for the high-throughput sequencing of bacteriophage genomes , 2016, PeerJ.

[22]  David S. Wishart,et al.  PHASTER: a better, faster version of the PHAST phage search tool , 2016, Nucleic Acids Res..

[23]  M. Cormican,et al.  Whole genome sequencing provides insights into the genetic determinants of invasiveness in Salmonella Dublin , 2016, Epidemiology and Infection.

[24]  M. Cormican,et al.  Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak , 2015, BMC Research Notes.

[25]  J. Crump,et al.  A Perspective on Invasive Salmonella Disease in Africa. , 2015, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  M. Cormican,et al.  Whole genome sequencing provides an unambiguous link between Salmonella Dublin outbreak strain and a historical isolate , 2015, Epidemiology and Infection.

[27]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[28]  R. Barrangou,et al.  Characterization and evolution of Salmonella CRISPR-Cas systems. , 2015, Microbiology.

[29]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[30]  S. Casjens,et al.  Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. , 2014, Virology.

[31]  M. Touchon,et al.  Pervasive domestication of defective prophages by bacteria , 2014, Proceedings of the National Academy of Sciences.

[32]  Hyunjin Yoon,et al.  Genomic Investigation of Lysogen Formation and Host Lysis Systems of the Salmonella Temperate Bacteriophage SPN9CC , 2013, Applied and Environmental Microbiology.

[33]  Nicholas A Feasey,et al.  Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa , 2012, The Lancet.

[34]  Philippe Horvath,et al.  CRISPR: new horizons in phage resistance and strain identification. , 2012, Annual review of food science and technology.

[35]  S. Casjens,et al.  Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. , 2011, Virology.

[36]  P. Carter,et al.  The evolution and distribution of phage ST160 within Salmonella enterica serotype Typhimurium , 2010, Epidemiology and Infection.

[37]  E. Nielsen,et al.  Phage typing of Salmonella Typhimurium - is it still a useful tool for surveillance and outbreak investigation? , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[38]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[39]  Thomas Rattei,et al.  Gepard: a rapid and sensitive tool for creating dotplots on genome scale , 2007, Bioinform..

[40]  M. Wiedmann,et al.  Antimicrobial resistance in nontyphoidal Salmonella. , 2007, Journal of food protection.

[41]  C. Georgopoulos Toothpicks, Serendipity and the Emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) Chaperone Machines , 2006, Genetics.

[42]  S. Casjens,et al.  The Generalized Transducing Salmonella Bacteriophage ES18: Complete Genome Sequence and DNA Packaging Strategy , 2005, Journal of bacteriology.

[43]  Michael William Heuzenroeder,et al.  Bacteriophage ST64B, a Genetic Mosaic of Genes from Diverse Sources Isolated from Salmonella enterica Serovar Typhimurium DT 64 , 2003, Journal of bacteriology.

[44]  J. Heitman,et al.  A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. , 2003, Nucleic acids research.

[45]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[46]  V. Braun,et al.  FhuA Barrel-Cork Hybrids Are Active Transporters and Receptors , 2001, Journal of bacteriology.

[47]  L. Bossi,et al.  Inducible prophages contribute to Salmonella virulence in mice , 1999, Molecular microbiology.

[48]  H. Schmieger Molecular Survey of the Salmonella Phage Typing System of Anderson , 1999, Journal of bacteriology.

[49]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[50]  S. Steinbacher,et al.  Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. , 1996, Biophysical Journal.

[51]  S. Brenner,et al.  Lambda foo: a lambda phage vector for the expression of foreign proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Miller,et al.  Oligopeptidase A is required for normal phage P22 development , 1992, Journal of bacteriology.

[53]  B. Rowe,et al.  Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24 , 1989, Epidemiology and Infection.

[54]  I. Herskowitz,et al.  Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda , 1984 .

[55]  D. Botstein,et al.  Molecular genetics of bacteriophage P22 , 1978 .

[56]  E. S. Anderson,et al.  Bacteriophage-typing designations of Salmonella typhimurium , 1977, Journal of Hygiene.

[57]  T. Kuo,et al.  ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. , 1970, Virology.

[58]  B. R. Callow A new phage-typing scheme for Salmonella typhi-murium , 1959, Journal of Hygiene.

[59]  A. Felix,et al.  Typing of Paratyphoid B Bacilli by Vi Bacteriophage* , 1943, British medical journal.

[60]  R. Young,et al.  Phage Lysis: Multiple Genes for Multiple Barriers. , 2019, Advances in virus research.

[61]  M. Cormican,et al.  Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. , 2009, Journal of medical microbiology.

[62]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[63]  W. Rabsch Salmonella typhimurium phage typing for pathogens. , 2007, Methods in molecular biology.

[64]  S. Douglas DNA Strider. A Macintosh program for handling protein and nucleic acid sequences. , 1994, Methods in molecular biology.

[65]  A. Felix,et al.  Typing of Paratyphoid B Bacilli by means of Vi Baeterio-phage. , 1943 .