Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces

Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi-Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state-of-the-art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump-probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome-paving the way to the thermodynamic efficiency limit.

[1]  V. Dyakonov,et al.  Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods , 2019, Journal of Materials Chemistry A.

[2]  T. Savenije,et al.  Charge Transfer from Methylammonium Lead Iodide Perovskite to Organic Transport Materials: Efficiencies, Transfer Rates, and Interfacial Recombination , 2017 .

[3]  T. Savenije,et al.  Comparing the Calculated Fermi Level Splitting with the Open-Circuit Voltage in Various Perovskite Cells , 2019, ACS Energy Letters.

[4]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[5]  K. Catchpole,et al.  A Universal Double‐Side Passivation for High Open‐Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) , 2018, Advanced Energy Materials.

[6]  Kenji Yamamoto,et al.  High-efficiency heterojunction crystalline Si solar cells , 2018, Japanese Journal of Applied Physics.

[7]  R. Friend,et al.  Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites , 2015, Nature Communications.

[8]  C. Deibel Front Cover (Phys. Status Solidi A 12/2009) , 2009 .

[9]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[10]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[11]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[12]  Thomas Kirchartz,et al.  Advanced Characterization Techniques for Thin Film Solar Cells , 2016 .

[13]  B. Rech,et al.  High open circuit voltages in pin-type perovskite solar cells through strontium addition , 2018, Sustainable Energy & Fuels.

[14]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[15]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[16]  P. Rieder,et al.  Impact of Interfaces and Laser Repetition Rate on Photocarrier Dynamics in Lead Halide Perovskites. , 2017, The journal of physical chemistry letters.

[17]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[18]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[19]  Wei Zhang,et al.  Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells , 2016 .

[20]  M. Gerhard,et al.  Impact of Excess Lead Iodide on the Recombination Kinetics in Metal Halide Perovskites , 2019, ACS Energy Letters.

[21]  C. Donolato A reciprocity theorem for charge collection , 1985 .

[22]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[23]  Rebecca A. Belisle,et al.  Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells , 2016 .

[24]  Thomas Kirchartz,et al.  Reciprocity between Charge Injection and Extraction and Its Influence on the Interpretation of Electroluminescence Spectra in Organic Solar Cells , 2016 .

[25]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[26]  M. Grätzel,et al.  The Institute of Chemistry of Great Britain and Ireland. Journal and Proceedings. Part II: 1935 , 1935 .

[27]  B. Rech,et al.  Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells , 2017 .

[28]  A. Rizzo,et al.  Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites , 2017, Scientific Reports.

[29]  W. Tress Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open‐Circuit Voltage and Low Recombination , 2017 .

[30]  Alexander Kmentt 2017 , 2018, The Treaty Prohibiting Nuclear Weapons.

[31]  Thomas Unold,et al.  High‐Efficiency (LixCu1−x)2ZnSn(S,Se)4 Kesterite Solar Cells with Lithium Alloying , 2018, Advanced Energy Materials.

[32]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[33]  M. Nazeeruddin,et al.  Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface , 2017 .

[34]  H. Snaith,et al.  Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices , 2018, Energy & environmental science.

[35]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[36]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[37]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[38]  Bernd Rech,et al.  It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. , 2017, ACS applied materials & interfaces.

[39]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[40]  T. Unold,et al.  Photoluminescence Analysis of Thin‐Film Solar Cells , 2011 .

[41]  J. Durrant,et al.  Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells. , 2012, The journal of physical chemistry letters.

[42]  P. Würfel,et al.  Physics of solar cells , 2005 .

[43]  A. Jen,et al.  Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics , 2018, ACS Energy Letters.

[44]  N. Koch,et al.  Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites , 2017 .

[45]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[46]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[47]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[48]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[49]  Juan Bisquert,et al.  Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements , 2016 .

[50]  N. Koch,et al.  Reduced Interface‐Mediated Recombination for High Open‐Circuit Voltages in CH3NH3PbI3 Solar Cells , 2017, Advanced materials.

[51]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[52]  Harry A. Atwater,et al.  Highly efficient GaAs solar cells by limiting light emission angle , 2013, Light: Science & Applications.

[53]  Seth R. Marder,et al.  Intrinsic non-radiative voltage losses in fullerene-based organic solar cells , 2017, Nature Energy.

[54]  A. Jen,et al.  Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics , 2017 .

[55]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[56]  U. Rau,et al.  Manipulating the Net Radiative Recombination Rate in Lead Halide Perovskite Films by Modification of Light Outcoupling. , 2017, The journal of physical chemistry letters.

[57]  Henk J. Bolink,et al.  Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers , 2016 .

[58]  Michael Saliba,et al.  Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinatorial Screening , 2019, Proceedings of the International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics.

[59]  L. Kronik,et al.  Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements. , 2019, The journal of physical chemistry letters.

[60]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[61]  W. Lövenich,et al.  Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[62]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[63]  V. Dyakonov,et al.  Revisiting lifetimes from transient electrical characterization of thin film solar cells; a capacitive concern evaluated for silicon, organic and perovskite devices , 2018 .

[64]  P. Rieder,et al.  Improved charge carrier lifetime in planar perovskite solar cells by bromine doping , 2016, Scientific Reports.

[65]  N. Wang,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[66]  J. Nelson,et al.  Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor , 2018, Physical Review Applied.

[67]  Martin A. Green,et al.  Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells , 2019, ACS Energy Letters.

[68]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[69]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[70]  Marko,et al.  On the Appearance of Wrinkled Morphology for CsxFA1−xPb(I1−yBry)3 Perovskite Compositions and the Impact on Solar Cell Performance , 2018 .

[71]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[72]  U. Rau,et al.  Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations , 2018 .

[73]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[74]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[75]  N. Kopidakis,et al.  Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity , 2013 .

[76]  Thomas Kirchartz,et al.  Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence , 2016 .

[77]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[78]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[79]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[80]  C. Brabec,et al.  Overcoming the Interface Losses in Planar Heterojunction Perovskite‐Based Solar Cells , 2016, Advanced materials.

[81]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[82]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[83]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[84]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[85]  J. Nelson,et al.  Meaning of reaction orders in polymer:fullerene solar cells , 2012 .

[86]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[87]  C. Brabec,et al.  The Interplay of Contact Layers: How the Electron Transport Layer Influences Interfacial Recombination and Hole Extraction in Perovskite Solar Cells. , 2018, The journal of physical chemistry letters.

[88]  Henk J. Bolink,et al.  Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging , 2016 .

[89]  U. Würfel,et al.  On the Impact of Contact Selectivity and Charge Transport on the Open‐Circuit Voltage of Organic Solar Cells , 2017 .

[90]  Tejas S. Sherkar,et al.  Improving Perovskite Solar Cells: Insights From a Validated Device Model , 2017 .

[91]  G. Dennler,et al.  Deep Defects in Cu2ZnSnðS;SeÞ4 Solar Cells with Varying Se Content , 2016 .

[92]  Juliane Kniepert,et al.  Charge carrier recombination dynamics in perovskite and polymer solar cells , 2016 .

[93]  Michael Grätzel,et al.  Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability , 2018, Nature Communications.

[94]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[95]  R. Grisorio,et al.  Rationalizing the Molecular Design of Hole‐Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells , 2019, Advanced Energy Materials.

[96]  Juan Bisquert,et al.  Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. , 2016, The journal of physical chemistry letters.

[97]  Jay B. Patel,et al.  Efficient perovskite solar cells by metal ion doping , 2016 .

[98]  V. Sundström,et al.  Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy. , 2016, Nanoscale.

[99]  T. Unold,et al.  Low Temperature Synthesis of Stable γ‐CsPbI3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation , 2019, Advanced Energy Materials.

[100]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[101]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[102]  D. Neher,et al.  Dispersive and steady-state recombination in organic disordered semiconductors , 2017 .

[103]  Gerd Bacher,et al.  The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. , 2018, The journal of physical chemistry letters.

[104]  N. Koch,et al.  Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies. , 2019, ACS applied materials & interfaces.

[105]  G. Cerullo,et al.  Femtosecond Charge-Injection Dynamics at Hybrid Perovskite Interfaces. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[106]  Anders Hagfeldt,et al.  Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells , 2017 .

[107]  K. Catchpole,et al.  Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using Luminescence Measurements , 2017 .

[108]  M. Grätzel,et al.  Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[109]  Dieter Neher,et al.  Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells , 2017 .

[110]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[111]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[112]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[113]  P. Würfel Physics of solar cells : from principles to new concepts , 2005 .

[114]  D. Abou‐Ras,et al.  Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers , 2017 .

[115]  A. Jen,et al.  Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. , 2018, Nano letters.

[116]  U. Würfel,et al.  Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells. , 2019, The journal of physical chemistry letters.

[117]  B. Rech,et al.  On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[118]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[119]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[120]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[121]  T. Kirchartz,et al.  Research Update: Recombination and open-circuit voltage in lead-halide perovskites , 2018, APL Materials.

[122]  Moritz H. Futscher,et al.  Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions , 2017, ACS energy letters.

[123]  S. Chang,et al.  A perovskite cell with a record-high-V(oc) of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. , 2016, Nanoscale.

[124]  Henk J. Bolink,et al.  Radiative efficiency of lead iodide based perovskite solar cells , 2014, Scientific Reports.

[125]  C. Deibel,et al.  Temperature Dependence of Ideality Factors in Organic Solar Cells and the Relation to Radiative Efficiency , 2016 .

[126]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[127]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[128]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[129]  H. Hillhouse,et al.  Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI3 to MAPbI2Br Using Composition Spread Libraries , 2016 .

[130]  Michael C. Heiber,et al.  Persistent photovoltage in methylammonium lead iodide perovskite solar cells , 2014, 1406.4276.

[131]  T. Unold,et al.  The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells , 2019, Advanced materials.

[132]  A. Hagfeldt,et al.  How the formation of interfacial charge causes hysteresis in perovskite solar cells , 2018 .

[133]  J. Nelson,et al.  Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells , 2017 .