Growth of large-scale and thickness-modulated MoS₂ nanosheets.

Two-dimensional MoS2 is a promising material for next-generation electronic and optoelectronic devices due to its unique electrical and optical properties including the band gap modulation with film thickness. Although MoS2 has shown excellent properties, wafer-scale production with layer control from single to few layers has yet to be demonstrated. The present study explored the large-scale and thickness-modulated growth of atomically thin MoS2 on Si/SiO2 substrates using a two-step sputtering-CVD method. Our process exhibited wafer-scale fabrication and successful thickness modulation of MoS2 layers from monolayer (0.72 nm) to multilayer (12.69 nm) with high uniformity. Electrical measurements on MoS2 field effect transistors (FETs) revealed a p-type semiconductor behavior with much higher field effect mobility and current on/off ratio as compared to previously reported CVD grown MoS2-FETs and amorphous silicon (a-Si) thin film transistors. Our results show that sputter-CVD is a viable method to synthesize large-area, high-quality, and layer-controlled MoS2 that can be adapted in conventional Si-based microfabrication technology and future flexible, high-temperature, and radiation hard electronics/optoelectronics.

[1]  P. Parilla,et al.  Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. , 2004, The journal of physical chemistry. B.

[2]  E. Altman,et al.  Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy , 2002 .

[3]  Ya Dong Li,et al.  Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. , 2003, Chemistry.

[4]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[5]  Mobility enhancement and highly efficient gating of monolayer MoS 2 transistors with polymer electrolyte , 2012, 1207.4824.

[6]  Shin-Shem Pei,et al.  High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains , 2013 .

[7]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[8]  Tomás Palacios,et al.  Graphene electronics: thinking outside the silicon box. , 2011, Nature nanotechnology.

[9]  Udai Bhanu,et al.  Photoluminescence quenching in gold - MoS2 hybrid nanoflakes , 2014, Scientific reports.

[10]  S. Sanvito,et al.  Possible doping strategies for MoS 2 monolayers: An ab initio study , 2013 .

[11]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[12]  Fosong Wang,et al.  ABAB‐Symmetric Tetraalkyl Titanyl Phthalocyanines for Solution Processed Organic Field‐Effect Transistors with Mobility Approaching 1 cm2 V−1 s−1 , 2013, Advanced materials.

[13]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[14]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[15]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[16]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[17]  Hui Zhao,et al.  Third-harmonic generation in ultrathin films of MoS2. , 2014, ACS applied materials & interfaces.

[18]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[19]  Xiying Ma,et al.  Thermal Evaporation Deposition of Few-layer MoS2 Films , 2013 .

[20]  Weiwei Zhao,et al.  Layer-by-layer thinning of MoS2 by plasma. , 2013, ACS nano.

[21]  A. Aleshin,et al.  Mobility studies of field-effect transistor structures basedon anthracene single crystals , 2004 .

[22]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[23]  Xianhui Chen,et al.  Low‐Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides. , 2001 .

[24]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[25]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[26]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[27]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[28]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[30]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[31]  A. Voevodin,et al.  Encapsulated Nanoparticles Produced by Pulsed Laser Ablation of MoS2-Te Composite Target , 2008 .

[32]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[33]  A. Saúl,et al.  Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. , 2004, Physical review letters.

[34]  S. Wagner,et al.  Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm2/V s for electrons and 0.1 cm2/V s for holes , 2009 .

[35]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[36]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[37]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[38]  W. Steckelmacher Introduction to surface and thin film processes , 2001 .

[39]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[40]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[41]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[42]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[43]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[44]  Siddharth Rajan,et al.  Large Area Single Crystal (0001) Oriented MoS2 Thin Films , 2013, 1302.3177.

[45]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[46]  Rongjian Sa,et al.  Magnetic properties of nonmetal atoms absorbed MoS2 monolayers , 2010 .

[47]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[48]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[49]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[50]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[51]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .