Empirical Verification of Effusion Cooled CMC Rocket Thrust Chambers

Thrust chambers are one of the most sensitive components in rocket propulsion systems due to safety and efficiency related to reasonable costs. Competitive space transportation systems ask for such low cost and high sophisticated solutions. A very promising approach in this field is the development of an effusion cooled CMC combustion chamber design, which offers a new perspective on the way to reliable future cryogenic rocket engines. The undoubted advantages of transpiration cooling under the critical view of efficiency, damage tolerance and low cost aspects can be accomplished with a relatively simple and low weight concept using carbon fiber composite materials. In the recent years DLR works on the application of effusion technology. The paper illustrates the empirical development steps accompanied by numerical simulations until a break through in form of the latest high performance tests early in 2005.

[1]  Fu-Jung Chen Effects of blowing ratios on heat transfer to the throat region of a porous-walled nozzle , 1995 .

[2]  Markus Ortelt,et al.  CMC rocket combustion chamber with effusion cooling , 2003 .

[3]  S. Beyer,et al.  Development and testing of C/SiC components for liquid rocket propulsion applications , 1999 .

[4]  Pol Duwez,et al.  Heat Transfer Through Sweat Cooled Porous Tubes , 1955 .

[5]  Stephan Schmidt,et al.  Advanced ceramic matrix composite materials for current and future propulsion technology applications , 2004 .

[6]  Markus Ortelt,et al.  Transpiration Cooling Applied to C/C Liners of Cryogenic Liquid Rocket Engines , 2004 .

[7]  M. K. Lezuo Wärmetransport in H2-transpirativ gekühlten Brennkammerkomponenten , 1998 .

[8]  W. D. Rannie A Simplified Theory of Porous Wall Cooling , 1947 .

[9]  T. Ullmann,et al.  Behaviour of C/C-SiC Material in Reentry and H2/O2 Combustion Environment , 1998 .

[10]  Armin Herbertz,et al.  Systemanalytische, vergleichende Untersuchung von transpirativ- und regenerativ gekühlten Brennkammern eines Raketenmotors , 2001 .

[11]  Hermann Hald,et al.  Effusion Cooling of Throat Region in Rocket Engines Applying Fibre Reinforced Ceramics , 2001 .

[12]  J. Lenertz,et al.  Effects of Blowing Ratio on Heat Transfer to the Throat Region of a Porous-Walled Nozzle. , 1994 .

[13]  D. Haeseler,et al.  Experimental investigation of transpiration cooled hydrogen-oxygen subscale chambers , 1998 .

[14]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[15]  A. Herbertz,et al.  Parametrische Zyklus-Untersuchung eines Nebenstromtriebwerks mit Effusionskühlung , 2003 .

[16]  Hermann Hald,et al.  Effusion Cooling in Rocket Combustors Applying Fiber Reinforced Ceramics , 1999 .

[17]  Oskar Haidn,et al.  Turbulent Boundary Layers with Foreign Gas Transpiration , 2001 .

[18]  Walter Krenkel,et al.  Entwicklung eines kostengünstigen Verfahrens zur Herstellung von Bauteilen aus keramischen Verbundwerkstoffen , 2000 .