Jetting behavior of polymer solutions in drop-on-demand inkjet printing

The jetting of dilute polymer solutions in drop-on-demand printing is investigated. A quantitative model is presented which predicts three different regimes of behavior depending upon the jet Weissenberg number Wi and extensibility of the polymer molecules. In regime I (Wi   L), the chains remain fully extended in the thinning ligament. The maximum polymer concentration at which a jet of a certain speed can be formed scales with molecular weight to the power of (1-3ν), (1-6ν), and −2ν in the three regimes, respectively, where ν is the solvent quality coefficient. Experimental data obtained with solutions of monodisperse polystyrene in diethyl phthalate with molecular weights between 24 and 488 kDa, previous numerical simulations of this system, and p...

[1]  R. Larson,et al.  Prediction of coil-stretch hysteresis for dilute polystyrene molecules in extensional flow , 2005 .

[2]  J. M. Rallison,et al.  Creeping flow of dilute polymer solutions past cylinders and spheres , 1988 .

[3]  Stephen D. Hoath,et al.  Evaluation of the inkjet fluid’s performance using the “Cambridge Trimaster” filament stretch and break-up device , 2010 .

[4]  C. Macosko,et al.  How dilute are dilute solutions in extensional flows , 2006 .

[5]  D. V. Boger,et al.  The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets , 1998 .

[6]  D. Vadillo,et al.  Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions , 2012, Rheologica Acta.

[7]  R. Shinnar,et al.  Breakup of a laminar capillary jet of a viscoelastic fluid , 1969, Journal of Fluid Mechanics.

[8]  M. Mackley,et al.  The effect of inkjet ink composition on rheology and jetting behaviour , 2011 .

[9]  W. Graessley Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power , 1980 .

[10]  Malcolm R. Mackley,et al.  Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids , 2008 .

[11]  I. Hutchings,et al.  High Speed Imaging and Analysis of Jet and Drop Formation , 2006, NIP & Digital Fabrication Conference.

[12]  S. Yeates,et al.  Inkjet printing of polymer solutions and the role of chain entanglement , 2007 .

[13]  Gareth H. McKinley,et al.  Elasto-capillary thinning and breakup of model elastic liquids , 2001 .

[14]  M. Mackley,et al.  The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers , 2010 .

[15]  G. McKinley,et al.  FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS , 2002 .

[16]  J. W. Hoyt,et al.  The structure of jets of water and polymer solution in air , 1974, Journal of Fluid Mechanics.

[17]  E. Hinch,et al.  Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid , 1997 .

[18]  Ulrich S. Schubert,et al.  Ink-Jet Printing of Linear and Star Polymers , 2005 .

[19]  G. McKinley,et al.  Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets , 2010, Journal of Fluid Mechanics.

[20]  G. McKinley,et al.  Constant force extensional rheometry of polymer solutions , 2012 .

[21]  Daniel R. Lester,et al.  Drop formation dynamics of constant low-viscosity, elastic fluids , 2002 .

[22]  J. Cooper-White,et al.  Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration , 2006 .

[23]  Shikha Somani,et al.  Effect of Solvent Quality on the Coil−Stretch Transition , 2010 .

[24]  M. Gottlieb,et al.  Surface-tension-driven breakup of viscoelastic liquid threads , 1982, Journal of Fluid Mechanics.

[25]  Graham D. Martin,et al.  Links Between Ink Rheology, Drop-on-Demand Jet Formation, and Printability , 2009 .

[26]  L. Walker,et al.  Surface tension driven jet break up of strain-hardening polymer solutions , 2001 .

[27]  A. Rozhkov,et al.  Dynamics and Breakup of Pulse Microjets of Polymeric Liquids , 2005 .

[28]  Oliver G. Harlen,et al.  Viscoelasticity in inkjet printing , 2010 .

[29]  Ulrich S. Schubert,et al.  Ink-jet printing polymers and polymer libraries using micropipettes , 2004 .

[30]  W. W. Carr,et al.  Drop-on-demand drop formation of polyethylene oxide solutions , 2011 .

[31]  U. Schubert,et al.  Inkjet printing of well-defined polymer dots and arrays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[32]  E. Hinch Uncoiling a polymer molecule in a strong extensional flow , 1994 .

[33]  S. Yeates,et al.  Flow-induced polymer degradation during ink-jet printing. , 2010, Macromolecular rapid communications.

[34]  E. J. Hinch,et al.  Mechanical models of dilute polymer solutions in strong flows , 1977 .

[35]  Osman A. Basaran,et al.  Small‐scale free surface flows with breakup: Drop formation and emerging applications , 2002 .

[36]  John D. Meyer,et al.  Effects of Polymeric Additives on Thermal Ink Jets , 1999 .

[37]  I. Hutchings,et al.  Experimental study of atomization patterns produced by the oblique collision of two viscoelastic liq , 2011 .

[38]  L. Campo-Deaño,et al.  The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary , 2010 .