Implementing quantum stochastic differential equations on a quantum computer

We study how to solve quantum stochastic differential equations (QSDEs) using a quantum computer. This is illustrated by an implementation of the QSDE that models the interaction of a laser driven two-level atom with the electromagnetic field in the vacuum state, on the IBMqx4 Tenerife quantum computer (IBM in The IBM Q experience. https://quantumexperience.ng.bluemix.net/qx. Accessed 23 Nov 2018, 2018). We compare the resulting master equation and quantum filtering equations to existing theory. In this way we characterize the performance of the computer.

[1]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[2]  D. Lidar,et al.  Quantum trajectories for time-dependent adiabatic master equations , 2017, 1710.03431.

[3]  E. Davies,et al.  Quantum stochastic processes , 1969 .

[4]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[5]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[6]  R. Handel,et al.  Discrete approximation of quantum stochastic models , 2008, 0803.4383.

[7]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[8]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[9]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[10]  John Edward Gough,et al.  Stochastic Schrödinger Equations as Limit of Discrete Filtering , 2004, Open Syst. Inf. Dyn..

[11]  B. Kümmerer Markov dilations on W∗-algebras , 1985 .

[12]  H. Carmichael An open systems approach to quantum optics , 1993 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[15]  W. V. Waldenfels A Measure Theoretical Approach to Quantum Stochastic Processes , 2013 .

[16]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[17]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[18]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[19]  K. R. Parthasarathy,et al.  The Passage From Random Walk to Diffusion in Quantum Probability , 1988 .

[20]  Gerard J. Milburn,et al.  Qubit models of weak continuous measurements: markovian conditional and open-system dynamics , 2017, 1710.09523.

[21]  H. Maassen Quantum Markov processes on Fock space described by integral kernels , 1985 .