Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine

Citation for published version: Martínez-Álvaro, M, Auffret, MD, Stewart, RD, Dewhurst, RJ, Duthie, C-A, Rooke, JA, Wallace, RJ, Shih, B, Freeman, TC, Watson, M & Roehe, R 2020, 'Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine', Frontiers in Microbiology, vol. 11, pp. 659. https://doi.org/10.3389/fmicb.2020.00659

[1]  Mick Watson,et al.  Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery , 2019, Nature Biotechnology.

[2]  X. Morgan,et al.  Diverse hydrogen production and consumption pathways influence methane production in ruminants , 2019, The ISME Journal.

[3]  Henrik Bjørn Nielsen,et al.  Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows , 2018, PLoS genetics.

[4]  R. Dewhurst,et al.  Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future , 2018, Front. Microbiol..

[5]  Michael Greenacre,et al.  Compositional Data Analysis in Practice , 2018 .

[6]  F. Madeo,et al.  Microbial wars: Competition in ecological niches and within the microbiome , 2018, Microbial cell.

[7]  Georgios A. Pavlopoulos,et al.  Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection , 2018, Nature Biotechnology.

[8]  C. Joshi,et al.  Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. , 2018, Systematic and applied microbiology.

[9]  R. Dewhurst,et al.  Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen , 2018, Nature Communications.

[10]  M. Wagner,et al.  Metatranscriptome Sequencing Reveals Insights into the Gene Expression and Functional Potential of Rumen Wall Bacteria , 2018, Front. Microbiol..

[11]  Rhesa N Ledbetter,et al.  A pathway for biological methane production using bacterial iron-only nitrogenase , 2018, Nature Microbiology.

[12]  M. Kreuzer,et al.  Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets , 2017, Front. Microbiol..

[13]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[14]  Anders F. Andersson,et al.  Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation , 2017, The ISME Journal.

[15]  Scott T. Weiss,et al.  Mapping the ecological networks of microbial communities , 2017, Nature Communications.

[16]  Pan-Jun Kim,et al.  Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis , 2017, Nature Communications.

[17]  O. Ince,et al.  Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass , 2017 .

[18]  H. Gonda,et al.  Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure , 2017, Front. Microbiol..

[19]  F. Strozzi,et al.  The ruminal microbiome associated with methane emissions from ruminant livestock , 2017, Journal of Animal Science and Biotechnology.

[20]  P. Saha,et al.  Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control , 2017, International journal of molecular sciences.

[21]  E. Rubin,et al.  Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation , 2016, Microbiome.

[22]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[23]  Donovan H. Parks,et al.  Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota , 2016, Nature Microbiology.

[24]  Kun-Hong Lee,et al.  Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids , 2016, Scientific Reports.

[25]  J. Skomiał,et al.  The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep , 2016, Archives of animal nutrition.

[26]  J. Dijkstra,et al.  Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. , 2016, Journal of dairy science.

[27]  B. White,et al.  Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants , 2016, The ISME Journal.

[28]  Mick Watson,et al.  Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance , 2016, PLoS genetics.

[29]  N. McEwan,et al.  The Role of Ciliate Protozoa in the Rumen , 2015, Front. Microbiol..

[30]  Mick Watson,et al.  The rumen microbial metagenome associated with high methane production in cattle , 2015, BMC Genomics.

[31]  P. B. Pope,et al.  Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range , 2015, Scientific Reports.

[32]  Tasia M. Taxis,et al.  The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity , 2015, Nucleic acids research.

[33]  A. Cherdthong,et al.  Dietary sources and their effects on animal production and environmental sustainability , 2015, Animal nutrition.

[34]  D. Pitta,et al.  Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows , 2015, Front. Microbiol..

[35]  F. Thompson,et al.  Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review , 2015, PeerJ.

[36]  J. Edwards,et al.  Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. , 2014, FEMS microbiology ecology.

[37]  J. Hyslop,et al.  Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle , 2014, Scientific Reports.

[38]  Dongwan D. Kang,et al.  Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome , 2014, Genome research.

[39]  J. Hyslop,et al.  Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype , 2014, British Journal of Nutrition.

[40]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[41]  S. Gribaldo,et al.  Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis , 2013, Genome biology and evolution.

[42]  Tsunglin Liu,et al.  Effects of GC Bias in Next-Generation-Sequencing Data on De Novo Genome Assembly , 2013, PloS one.

[43]  A. Spang,et al.  Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen , 2013, Nature Communications.

[44]  Jonathan Friedman,et al.  Inferring Correlation Networks from Genomic Survey Data , 2012, PLoS Comput. Biol..

[45]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[46]  A. Schnürer,et al.  Methanogenic Population and CH4 Production in Swedish Dairy Cows Fed Different Levels of Forage , 2012, Applied and Environmental Microbiology.

[47]  T. Mcallister,et al.  Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive , 2011, Journal of applied microbiology.

[48]  Noah Fierer,et al.  Using network analysis to explore co-occurrence patterns in soil microbial communities , 2011, The ISME Journal.

[49]  D. Morgavi,et al.  Rumen protozoa and methanogenesis: not a simple cause–effect relationship , 2011, British Journal of Nutrition.

[50]  S. Wiedemann,et al.  Ruminant enteric methane mitigation: a review , 2011 .

[51]  C. Martin,et al.  Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. , 2011, Journal of animal science.

[52]  P. Janssen Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics , 2010 .

[53]  C. Martin,et al.  Microbial ecosystem and methanogenesis in ruminants. , 2010, Animal : an international journal of animal bioscience.

[54]  William J. Kelly,et al.  The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions , 2010, PloS one.

[55]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[56]  Peter H. Janssen,et al.  Structure of the Archaeal Community of the Rumen , 2008, Applied and Environmental Microbiology.

[57]  Stijn van Dongen,et al.  Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data , 2007, PLoS Comput. Biol..

[58]  J. Hackstein,et al.  The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. , 2007, FEMS microbiology ecology.

[59]  Zhongtang Yu,et al.  Improved extraction of PCR-quality community DNA from digesta and fecal samples. , 2004, BioTechniques.

[60]  E. Forano,et al.  Fiber-Degrading Systems of Different Strains of the Genus Fibrobacter , 2004, Applied and Environmental Microbiology.

[61]  A. R. Moss,et al.  Methane production by ruminants: its contribution to global warming , 2000 .

[62]  T. May,et al.  The Effect of a Methanogen, Methanobrevibacter smithii, on the Growth Rate, Organic Acid Production, and Specific ATP Activity of Three Predominant Ruminal Cellulolytic Bacteria , 2000, Current Microbiology.

[63]  K. Ushida,et al.  Methanogens associated with rumen ciliates , 1997 .

[64]  D. Johnson,et al.  Methane emissions from cattle. , 1995, Journal of animal science.

[65]  D. Lloyd,et al.  Oxygen consumption by ruminal microorganisms: protozoal and bacterial contributions , 1989, Applied and environmental microbiology.

[66]  R. Dewhurst,et al.  Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets , 2018 .

[67]  M. Eugène,et al.  Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants , 2004 .

[68]  U. S. Dairy Manipulating Ruminal Fermentation : A Microbial Ecological Perspective , 1998 .