CTD Tyrosine Phosphorylation Impairs Termination Factor Recruitment to RNA Polymerase II
暂无分享,去创建一个
Patrick Cramer | Dirk Eick | Michael Lidschreiber | Andreas Mayer | P. Cramer | E. Kremmer | A. Mayer | M. Lidschreiber | D. Eick | M. Heidemann | Corinna Hintermair | Amelie Schreieck | Elisabeth Kremmer | A. Schreieck | Mai Sun | Mai Sun | Martin Heidemann | Corinna Hintermair | Michael Lidschreiber
[1] Jean Y. J. Wang,et al. Nuclear c-Abl Is a COOH-Terminal Repeated Domain (CTD)-Tyrosine Kinase-specific for the Mammalian RNA Polymerase II: Possible Role in Transcription Elongation , 1999 .
[2] D. Bentley,et al. Dynamic association of capping enzymes with transcribing RNA polymerase II. , 2000, Genes & development.
[3] Sean J. Johnson,et al. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. , 2011, Journal of molecular biology.
[4] Amit P. Sheth,et al. RNAP II CTD Phosphorylated on Threonine-4 Is Required for Histone mRNA 3′ End Processing , 2011, Science.
[5] Anton Meinhart,et al. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors , 2004, Nature.
[6] D. E. Levin,et al. Mpk1 MAPK Association with the Paf1 Complex Blocks Sen1-Mediated Premature Transcription Termination , 2011, Cell.
[7] F. Winston,et al. Noncanonical Tandem SH2 Enables Interaction of Elongation Factor Spt6 with RNA Polymerase II* , 2010, The Journal of Biological Chemistry.
[8] S. Buratowski,et al. The CTD code , 2003, Nature Structural Biology.
[9] Q. Gong,et al. Solution Structure of Tandem SH2 Domains from Spt6 Protein and Their Binding to the Phosphorylated RNA Polymerase II C-terminal Domain* , 2011, The Journal of Biological Chemistry.
[10] M. Gerstein,et al. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.
[11] Shona Murphy,et al. Cracking the RNA polymerase II CTD code. , 2008, Trends in genetics : TIG.
[12] Fan Yang,et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain , 2010, Nature Structural &Molecular Biology.
[13] S. Buratowski,et al. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. , 2004, Molecular cell.
[14] R. Aebersold,et al. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. , 2011, Genes & development.
[15] S. Buratowski,et al. The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain , 2008, Nature Structural &Molecular Biology.
[16] J. Corden,et al. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. , 1995, Genetics.
[17] E. Cho,et al. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. , 2000, Genes & development.
[18] Wolfgang Huber,et al. A high-resolution map of transcription in the yeast genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[19] J. Wang,et al. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[20] Matthew S. Cook,et al. Functional Unit of the RNA Polymerase II C-Terminal Domain Lies within Heptapeptide Pairs , 2004, Eukaryotic Cell.
[21] Patrick Cramer,et al. Structure and in vivo requirement of the yeast Spt6 SH2 domain. , 2009, Journal of molecular biology.
[22] Kevan M Shokat,et al. Features of selective kinase inhibitors. , 2005, Chemistry & biology.
[23] Alan G Hinnebusch,et al. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. , 2009, Molecular cell.
[24] Johannes Söding,et al. Uniform transitions of the general RNA polymerase II transcription complex , 2010, Nature Structural &Molecular Biology.
[25] D. Eick,et al. Molecular evolution of the RNA polymerase II CTD. , 2008, Trends in genetics : TIG.
[26] J. Corden. Seven Ups the Code , 2007, Science.
[27] Dirk Eick,et al. Transcribing RNA Polymerase II Is Phosphorylated at CTD Residue Serine-7 , 2007, Science.
[28] D. Brow,et al. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts , 2001, Nature.
[29] E. Cho,et al. Phosphorylation of the Yeast Rpb1 C-terminal Domain at Serines 2, 5, and 7* , 2009, The Journal of Biological Chemistry.
[30] S. Buratowski. Progression through the RNA polymerase II CTD cycle. , 2009, Molecular cell.
[31] Dirk Eick,et al. Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene Expression , 2007, Science.
[32] Sarah J. Wheelan,et al. Transcriptome-Wide Binding Sites for Components of the Saccharomyces cerevisiae Non-Poly(A) Termination Pathway: Nrd1, Nab3, and Sen1 , 2011, PLoS genetics.
[33] P. Cramer,et al. A Tandem SH2 Domain in Transcription Elongation Factor Spt6 Binds the Phosphorylated RNA Polymerase II C-terminal Repeat Domain (CTD)* , 2010, The Journal of Biological Chemistry.
[34] J. Graber,et al. Gene-specific RNA pol II phosphorylation and the "CTD code" , 2010, Nature Structural &Molecular Biology.