Dimer automata and cellular automata

Abstract We define a class of discrete dynamical systems which we call dimer automata. Whereas in a cellular automaton the new state of one cell is a function of the states in the neighborhood, in a dimer automaton the new states of two neighboring cells are functions of the states of these two cells. Dimer automata with synchronous dynamics seem artificial, but with asynchronous dynamics such systems are very natural. They are as simple as cellular automata; they have some advantages in modeling spatial spread. We present the definition, some easy consequences, a classification of one-dimensional dimer automata, a first approach to determine a characteristic equation and a formula for an approximate asymptotic density as well as a comparison to computer simulations. Finally we compare synchronous and asynchronous cellular automata.

[1]  Mario Markus,et al.  Mollusc Shell Pigmentation: Cellular Automaton Simulations and Evidence for Undecidability , 1996 .

[2]  William G. Wilson,et al.  Mobility versus density-limited predator-prey dynamics on different spatial scales , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  B. Schönfisch Propagation of fronts in cellular automata , 1995 .

[4]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[5]  Thomas Lengauer,et al.  Informatik in den Biowissenschaften, 1. Fachtagung der GI-FG 4.0.3 "Informatik in den Biowissenschaften", Bonn, 15./16. Februar 1993, Proceedings , 1993, Informatik in den Biowissenschaften.

[6]  T. Liggett Interacting Particle Systems , 1985 .

[7]  G. Oster,et al.  A Model for Shell Patterns Based on Neural Activity , 2010 .

[8]  Andreas Deutsch,et al.  Zelluläre Automaten als Modelle von Musterbildungsprozessen in biologischen Systemen , 1993, Informatik in den Biowissenschaften.

[9]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Akira Sasaki,et al.  Statistical Mechanics of Population: The Lattice Lotka-Volterra Model , 1992 .

[11]  N. Boccara,et al.  Automata network SIR models for the spread of infectious diseases in populations of moving individuals , 1992 .

[12]  Akira Sasaki,et al.  Statistical Mechanics of Population , 1992 .

[13]  D. Stauffer Classification of square lattice cellular automata , 1989 .

[14]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[15]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[16]  Youichi Kobuchi,et al.  A spatial pattern formation model for Dictyostelium discoideum , 1986 .