Semiconductor optical amplifiers at 2.0‐µm wavelength on silicon

A semiconductor optical amplifier at 2.0-µm wavelength is reported. This device is heterogeneously integrated by directly bonding an InP-based active region to a silicon substrate. It is therefore compatible with low-cost and high-volume fabrication infrastructures, and can be efficiently coupled to other active and passive devices in a photonic integrated circuit. On-chip gain larger than 13 dB is demonstrated at 20 °C, with a 3-dB bandwidth of ∼75 nm centered at 2.01 µm. No saturation of the gain is observed for an on-chip input power up to 0 dBm, and on-chip gain is observed for temperatures up to at least 50 °C. This technology paves the way to chip-level applications for optical communication, industrial or medical monitoring, and non-linear optics.

[1]  David J. Richardson,et al.  Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission , 2016, Journal of Lightwave Technology.

[2]  李聖昊,et al.  28 , 1910, Tao te Ching.

[3]  Shigehisa Arai,et al.  Gain saturation and propagation characteristics of index-guided tapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs) , 1992 .

[4]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Zach DeVito,et al.  Opt , 2017 .

[6]  Alexander Spott,et al.  Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. , 2015, Optics express.

[7]  Measurement of SOA Linewidth Enhancement Factor With a Sagnac Fiber Loop , 2006, IEEE Photonics Technology Letters.

[8]  Joseph C. Farmer,et al.  38 , 2006, The Hatak Witches.

[9]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[10]  D. J. Robbins,et al.  Lifetime broadening in GaAs-AlGaAs quantum well lasers , 1990 .

[11]  Kuanping Shang,et al.  Highly efficient chip-scale III-V/silicon hybrid optical amplifiers. , 2015, Optics express.

[12]  N. Barnes,et al.  Profiling atmospheric water vapor using a fiber laser lidar system. , 2010, Applied optics.

[13]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[14]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[15]  C. Brès,et al.  Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion. , 2016, Optics express.

[16]  John Bowers,et al.  Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. , 2015, Optics letters.

[17]  송원영,et al.  27 , 1910, Georgia O'Keeffe.

[18]  Bishnu P. Pal Frontiers in Guided Wave Optics and Optoelectronics , 2010 .

[19]  N. Storkfelt,et al.  Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier , 1991, IEEE Photonics Technology Letters.

[20]  Walter Wolf,et al.  MOSS-BURSTEIN AND PLASMA REFLECTION CHARACTERISTICS OF HEAVILY DOPED N-TYPE INXGA1-XAS AND INPYAS1-Y , 1999 .

[21]  奥仲 哲弥,et al.  肺門部早期肺癌に対する光線力学的治療法(肺門部早期癌の診断と治療)(第 18 回日本気管支学会総会特集号) , 1995 .

[22]  Γιώργος Χ. Χιονίδης 21 , 1995, Between Two Shores.

[23]  Anand Gopinath,et al.  Polarization-insensitive quantum-well semiconductor optical amplifiers , 2002 .

[24]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.

[25]  K. Moffett,et al.  Remote Sens , 2015 .

[26]  John E. Bowers,et al.  Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[28]  Gunther Roelkens,et al.  2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. , 2015, Optics express.

[29]  Laurent Schares,et al.  Phase dynamics of semiconductor optical amplifiers at 10-40 GHz , 2003 .

[30]  K. Dybdal,et al.  The design of erbium-doped fiber amplifiers , 1991 .

[31]  Guilhem de Valicourt,et al.  Hybrid III-V/Silicon SOA in Optical Network Based on Advanced Modulation Formats , 2015, IEEE Photonics Technology Letters.

[32]  L. D. Westbrook Dispersion of linewidth-broadening factor in 1.5 μm laser diodes , 1985 .

[33]  G. Thompson,et al.  Effect of injection current on the dielectric constant of an inbuilt waveguide in twin-transverse-junction stripe lasers , 1979 .

[34]  内山 健太郎,et al.  26 , 2015, Magical Realism for Non-Believers.

[35]  Bo Chen,et al.  Histological and modeling study of skin thermal injury to 2.0 μm laser irradiation , 2008, Lasers in surgery and medicine.

[36]  Masahiro Asada,et al.  Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers , 1985 .

[37]  Di Liang,et al.  Hybrid Integrated Platforms for Silicon Photonics , 2010, Materials.

[38]  Mark A Arnold,et al.  Near-Infrared Microspectroscopic Analysis of Rat Skin Tissue Heterogeneity in Relation to Noninvasive Glucose Sensing , 2009, Journal of diabetes science and technology.

[39]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[40]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[41]  Vernon,et al.  Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. , 1994, Physical review. B, Condensed matter.

[42]  Kang Sun,et al.  Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles , 2012, Remote. Sens..

[43]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  39 , 2014, Fetch the Devil.

[45]  R. Tucker,et al.  Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers , 2000 .

[46]  Andrew G. Glen,et al.  APPL , 2001 .

[47]  E. Desurvire Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm. , 1990, Applied optics.

[48]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[49]  Sanja Zlatanovic,et al.  Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .

[50]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[51]  Atsushi Sato,et al.  Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device. , 2010, Applied optics.

[52]  L. Eastman,et al.  Strained-layer InGaAs-GaAs-AlGaAs lasers grown by molecular beam epitaxy for high-speed modulation , 1991 .

[53]  M. Jaros,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[54]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[55]  J. Bauwelinck,et al.  III-V-on-Silicon Photonic Devices for Optical Communication and Sensing , 2015 .

[56]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[57]  J. Bowers,et al.  Superlattice barrier 1528 nm vertical cavity laser with 85/spl deg/C continuous wave operation , 2000, Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092).

[58]  Joel M. Harris,et al.  Laser induced thermal lens effect for calorimetric trace analysis , 1979 .

[59]  C. Henry,et al.  Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs , 1984 .

[60]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.