Volume-Preserving Diffeomorphisms with the M0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_0$$\end{docu

[1]  Manseob Lee,et al.  Stable weakly shadowable volume-preserving systems are volume-hyperbolic , 2012, 1207.5546.

[2]  A. Arbieto,et al.  A pasting lemma and some applications for conservative systems , 2006, Ergodic Theory and Dynamical Systems.

[3]  Manseob Lee Stably asymptotic average shadowing property and dominated splitting , 2012 .

[4]  Shui-Nee Chow,et al.  A shadowing lemma with applications to semilinear parabolic equations , 1989 .

[5]  C. Bonatti,et al.  Recurrence and genericity , 2003 .

[6]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[7]  Xinxing Wu,et al.  Some remarks ond-shadowing property , 2015 .

[8]  C. Pugh An Improved Closing Lemma and a General Density Theorem , 1967 .

[9]  Partial hyperbolicity for symplectic diffeomorphisms , 2004, math/0412072.

[10]  J. Rocha,et al.  On C1-robust transitivity of volume-preserving flows , 2007, 0707.2554.

[11]  J. Moser On the volume elements on a manifold , 1965 .

[12]  Xinxing Wu,et al.  Diffeomorphisms with the ℳ0-shadowing Property , 2019, Acta Mathematica Sinica, English Series.

[13]  Enrique R. Pujals,et al.  A C^1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources , 2003 .

[14]  Xinxing Wu,et al.  Various Shadowing in Linear Dynamical Systems , 2019, Int. J. Bifurc. Chaos.

[15]  B. Honary,et al.  Asymptotic average shadowing property on compact metric spaces , 2008 .

[16]  M. Bessa,et al.  Conservative flows with various types of shadowing , 2013, 1306.2594.

[17]  Hassan Najafi Alishah,et al.  Realization of tangent perturbations in discrete and continuous time conservative systems , 2013, 1310.1063.

[18]  Manseob Lee,et al.  Diffeomorphisms with C1-stably average shadowing , 2013 .

[19]  J. Rocha,et al.  Contributions to the geometric and ergodic theory of conservative flows , 2008, Ergodic Theory and Dynamical Systems.

[20]  Celso Grebogi,et al.  Numerical orbits of chaotic processes represent true orbits , 1988 .

[21]  Charles Pugh,et al.  The C1 Closing Lemma, including Hamiltonians , 1983, Ergodic Theory and Dynamical Systems.

[22]  Thérèse Vivier Projective hyperbolicity and fixed points , 2006, Ergodic Theory and Dynamical Systems.

[23]  John Franks Necessary conditions for stability of diffeomorphisms , 1971 .

[24]  M. Bessa A generic incompressible flow is topological mixing , 2008 .

[25]  Shuhei Hayashi,et al.  Diffeomorphisms in ℱ1(M) satisfy Axiom A , 1992, Ergodic Theory and Dynamical Systems.

[26]  R. Bowen ω-Limit sets for Axiom A diffeomorphisms , 1975 .

[27]  Kazuhiro Sakai,et al.  Diffeomorphisms with the Average-Shadowing Property on Two-Dimensional Closed Manifolds , 2000 .

[28]  Rongbao Gu,et al.  The asymptotic average shadowing property and transitivity , 2007 .

[29]  S. Newhouse Quasi-Elliptic Periodic Points in Conservative Dynamical Systems , 1977 .

[30]  Manseob Lee Symplectic diffeomorphisms with limit shadowing , 2017 .

[31]  J. Rocha,et al.  Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows , 2009 .

[32]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[33]  C. Bonatti,et al.  Perturbations of the derivative along periodic orbits , 2006, Ergodic Theory and Dynamical Systems.

[34]  R. Mañé,et al.  An Ergodic Closing Lemma , 1982 .

[35]  Guanrong Chen,et al.  On various definitions of shadowing with average error in tracing , 2014, 1406.5822.

[36]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .