Flexible All‐Solid‐State Supercapacitors based on Liquid‐Exfoliated Black‐Phosphorus Nanoflakes

Flexible all-solid-state supercapacitors are fabricated with liquid-exfoliated black-phosphorus (BP) nanoflakes as an electrode material. These devices deliver high specific volumetric capacitance, power density, and energy density, up to 13.75 F cm(-3) , 8.83 W cm(-3) , and 2.47 mW h cm(-3) , respectively, and an outstanding long life span of over 30 000 cycles, demonstrating the excellent performance of the BP nanoflakes as a flexible electrode material in electrochemical energy-storage devices.

[1]  Wei-Nien Su,et al.  Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs , 2012 .

[2]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[3]  Hyung-Jun Koo,et al.  Selective Wetting‐Induced Micro‐Electrode Patterning for Flexible Micro‐Supercapacitors , 2014, Advanced materials.

[4]  Fatemeh Khalili-Araghi,et al.  Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes. , 2015, ACS nano.

[5]  Wei Lv,et al.  Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors , 2013, Scientific Reports.

[6]  H. Lei,et al.  Carboxyl-Assisted Synthesis of Nitrogen-Doped Graphene Sheets for Supercapacitor Applications , 2015, Nanoscale Research Letters.

[7]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[8]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[9]  J. White,et al.  Thermal decomposition reactions of acetaldehyde and acetone on Si(100) , 1997 .

[10]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[11]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[12]  Chien-Wei Wu,et al.  Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor , 2015 .

[13]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[14]  Wentao Hu,et al.  Controlled Incorporation of Ni(OH)2 Nanoplates Into Flowerlike MoS2 Nanosheets for Flexible All‐Solid‐State Supercapacitors , 2014 .

[15]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[16]  Quan-hong Yang,et al.  A Metal‐Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm−3 , 2015, Advanced materials.

[17]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[18]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[19]  Daeil Kim,et al.  All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes , 2014 .

[20]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[21]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[22]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[23]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[24]  J. A. Menéndez,et al.  On the nature of basic sites on carbon surfaces: an overview , 2004 .

[25]  B. Conway,et al.  Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs , 2006 .

[26]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[27]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[28]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[29]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[30]  Chunjoong Kim,et al.  Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries , 2008 .

[31]  H. Hatori,et al.  Supercapacitors Prepared from Melamine-Based Carbon , 2005 .

[32]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[33]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[34]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[35]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[36]  Martin Pumera,et al.  Layered transition metal dichalcogenides for electrochemical energy generation and storage , 2014 .

[37]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[38]  Bingjie Zhu,et al.  High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons , 2015 .

[39]  Mônica Calixto de Andrade,et al.  BIOACTIVITY ASSESSMENT OF TITANIUM SHEETS ELECTROCHEMICALLY COATED WITH THICK OXIDE FILM , 2003 .

[40]  M. Jaroniec,et al.  Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption , 2014 .

[41]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[42]  E. Fluck,et al.  Anwendung der Röntgen-Photoelektronenspektroskopie in der Phosphorchemie, II , 1974 .

[43]  Wei Lv,et al.  Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage , 2015 .

[44]  Zheng Zhang,et al.  Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor , 2013, Scientific Reports.

[45]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[46]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[47]  Jinlong Yang,et al.  Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. , 2011, Journal of the American Chemical Society.

[48]  R. Gresch,et al.  X-ray photoelectron spectroscopy of sodium phosphate glasses , 1979 .

[49]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[50]  Jing Guo,et al.  Performance Limits Projection of Black Phosphorous Field-Effect Transistors , 2014, IEEE Electron Device Letters.

[51]  Jian Zhen Ou,et al.  Two‐Dimensional Molybdenum Trioxide and Dichalcogenides , 2013 .

[52]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[53]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[54]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[55]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[56]  Jun Hu,et al.  Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. , 2015, ACS nano.

[57]  S. Hardcastle,et al.  The nature of hydrogen in x‐ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding , 1996 .

[58]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[59]  M. Hersam,et al.  Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. , 2015, ACS nano.

[60]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[61]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[62]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[63]  H. Ushiyama,et al.  Comparative Study of Sodium and Lithium Intercalation and Diffusion Mechanism in Black Phosphorus from First-principles Simulation , 2014 .

[64]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[65]  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.