Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle

This paper concerns parameter identification of Hammerstein output error moving average systems with a two-segment piecewise nonlinearity. By combining the key-term separation principle and the data filtering technique, we transfer the Hammerstein model into two regression identification models, and present a data filtering based recursive least squares method to estimate the parameters of these two identification models. The proposed algorithm achieves a higher computational efficiency than the standard approach by using covariance matrices of smaller dimensions from the two identification models instead of one identification model in the standard approach.

[1]  J. Suykens,et al.  Subspace identification of Hammerstein systems using least squares support vector machines , 2005 .

[2]  F. Ding,et al.  An auxiliary model based on a recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems , 2009 .

[3]  Laura Rebollo-Neira,et al.  Nonlinear non-extensive approach for identification of structured information , 2009, 0908.0694.

[4]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[5]  Wolfgang Marquardt,et al.  A multi-variate Hammerstein model for processes with input directionality , 2007 .

[6]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[7]  Alireza Rahrooh,et al.  Identification of nonlinear systems using NARMAX model , 2009 .

[8]  Min Gan,et al.  A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling , 2010, Inf. Sci..

[9]  Yan Zhang,et al.  Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems , 2010, Math. Comput. Model..

[10]  Somanath Majhi,et al.  Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains. , 2010, ISA transactions.

[11]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[12]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[13]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[14]  Feng Ding,et al.  Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems , 2010, Math. Comput. Model..

[15]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[16]  Huizhong Yang,et al.  Modelling and identification for non-uniformly periodically sampled-data systems , 2010 .

[17]  Feng Ding,et al.  Input-output data filtering based recursive least squares identification for CARARMA systems , 2010, Digit. Signal Process..

[18]  Wlodzimierz Greblicki,et al.  Recursive identification of continuous-time Hammerstein systems , 2002, Int. J. Syst. Sci..

[19]  Feng Ding,et al.  Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems , 2010, Comput. Math. Appl..

[20]  Emmanuel Foltete,et al.  Nonlinear identification in structural dynamics based on Wiener series and Kautz filters , 2010 .

[21]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[22]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[23]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[24]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[25]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[26]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[27]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[28]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[29]  Vassilis G. Kaburlasos,et al.  Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals' numbers (INs) , 2010, Inf. Sci..

[30]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[31]  Feng Ding,et al.  Multi-innovation stochastic gradient algorithms for multi-input multi-output systems , 2009, Digit. Signal Process..

[32]  Fernando José Von Zuben,et al.  Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification , 2007, Inf. Sci..

[33]  Sheng Chen,et al.  Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..

[34]  Kemal Kilic,et al.  Comparison of Different Strategies of Utilizing Fuzzy Clustering in Structure Identification , 2007, Inf. Sci..