Estimation and Model Selection of Semiparametric Multivariate Survival Functions under General Censorship

We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

[1]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[2]  Christian Genest,et al.  Conditions for the Asymptotic Semiparametric Efficiency of an Omnibus Estimator of Dependence Parame , 2000 .

[3]  Zhiliang Ying,et al.  Estimating a distribution function with truncated and censored data , 1991 .

[4]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[5]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[6]  Michael Wolf,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 17 Stewise Multiple Testing as Formalized Data Snooping Stepwise Multiple Testing as Formalized Data Snooping , 2022 .

[7]  I. Keilegom,et al.  Bivariate Archimedean copula models for censored data in non-life insurance , 2006 .

[8]  C. Klaassen,et al.  Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .

[9]  D. Oakes Multivariate survival distributions , 1994 .

[10]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[11]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[12]  R. Gill Censoring and stochastic integrals , 1980 .

[13]  Martien C. A. van Zuijlen,et al.  Properties of the Empirical Distribution Function for Independent Non- Identically Distributed Random Vectors , 1978 .

[14]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[15]  H. White,et al.  Information criteria for selecting possibly misspecified parametric models , 1996 .

[16]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[17]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[18]  R. Nelsen An Introduction to Copulas , 1998 .

[19]  Yanqin Fan,et al.  Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection , 2005 .

[20]  H. Joe Multivariate models and dependence concepts , 1998 .

[21]  David X. Li On Default Correlation , 2000 .

[22]  M. Akritas Nearest Neighbor Estimation of a Bivariate Distribution Under Random Censoring , 1994 .

[23]  Xiaohong Chen,et al.  A MODEL SELECTION TEST FOR BIVARIATE FAILURE-TIME DATA , 2007, Econometric Theory.

[24]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[25]  D. Dabrowska Kaplan-Meier estimate on the plane: Weak convergence, LIL, and the bootstrap☆ , 1989 .

[26]  Michel Denuit,et al.  Bivariate Archimedean copula modelling for loss-ALAE data in non-life insurance , 2004 .

[27]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[28]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[29]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[30]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[31]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.