MRI of the hip at 7T: Feasibility of bone microarchitecture, high‐resolution cartilage, and clinical imaging

To demonstrate the feasibility of performing bone microarchitecture, high‐resolution cartilage, and clinical imaging of the hip at 7T.

[1]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[2]  D G Disler,et al.  Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. , 1995, AJR. American journal of roentgenology.

[3]  D W Piraino,et al.  Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. , 1996, Radiology.

[4]  K. Scheffler,et al.  Hyperechoes , 2001, Magnetic resonance in medicine.

[5]  Sharmila Majumdar,et al.  Magnetic Resonance Imaging of Trabecular Bone Structure , 2002, Topics in magnetic resonance imaging : TMRI.

[6]  Peter Kellman,et al.  Image reconstruction in SNR units: A general method for SNR measurement † , 2005, Magnetic resonance in medicine.

[7]  Roland Krug,et al.  Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur , 2005, Osteoporosis International.

[8]  Felix Eckstein,et al.  Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis , 2006, NMR in biomedicine.

[9]  Sharmila Majumdar,et al.  Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. , 2006, Radiology.

[10]  Ravinder R Regatte,et al.  Ultra‐high‐field MRI of the musculoskeletal system at 7.0T , 2007, Journal of magnetic resonance imaging : JMRI.

[11]  F. Wehrli Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging , 2007, Journal of magnetic resonance imaging : JMRI.

[12]  A. Tosteson,et al.  Incidence and Economic Burden of Osteoporosis‐Related Fractures in the United States, 2005–2025 , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  Sharmila Majumdar,et al.  In vivo bone and cartilage MRI using fully‐balanced steady‐state free‐precession at 7 tesla , 2007, Magnetic resonance in medicine.

[14]  G. Metzger,et al.  Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements , 2008, Magnetic resonance in medicine.

[15]  Sharmila Majumdar,et al.  Rapid in vivo musculoskeletal MR with parallel imaging at 7T , 2008, Magnetic resonance in medicine.

[16]  Klaus Scheffler,et al.  In Vivo Biochemical 7.0 Tesla Magnetic Resonance: Preliminary Results of dGEMRIC, Zonal T2, and T2* Mapping of Articular Cartilage , 2008, Investigative radiology.

[17]  Y. Won,et al.  Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae , 2008, Osteoporosis International.

[18]  Gregory Chang,et al.  Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[19]  Sharmila Majumdar,et al.  Imaging of the Musculoskeletal System In Vivo Using Ultra-high Field Magnetic Resonance at 7 T , 2009, Investigative radiology.

[20]  Ligong Wang,et al.  Relaxation times of skeletal muscle metabolites at 7T , 2009, Journal of magnetic resonance imaging : JMRI.

[21]  Y. Bunai,et al.  Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck , 2010, Osteoporosis International.

[22]  Gregory Chang,et al.  Rapid isotropic 3D‐sodium MRI of the knee joint in vivo at 7T , 2009, Journal of magnetic resonance imaging : JMRI.

[23]  Oliver Bieri,et al.  23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. , 2010, Radiology.

[24]  Felix W. Wehrli,et al.  3D fast spin echo with out‐of‐slab cancellation: A technique for high‐resolution structural imaging of trabecular bone at 7 tesla , 2010, Magnetic resonance in medicine.

[25]  F. Mühlbauer Ultra-high-field magnetic resonance imaging , 2008 .

[26]  Han Shan,et al.  Fat-suppressed 3D T1-weighted gradient-echo imaging of the cartilage with a volumetric interpolated breath-hold examination. , 2010, AJR. American journal of roentgenology.

[27]  Punam K. Saha,et al.  Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images , 2011, Magnetic Resonance Materials in Physics, Biology and Medicine.

[28]  W. Bogner,et al.  In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3 T and 7 T , 2011, Magnetic resonance in medicine.

[29]  C. S. Rajapakse,et al.  Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers , 2013, Osteoporosis International.

[30]  J. Babb,et al.  Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T , 2012, Magnetic resonance in medicine.

[31]  Vladimir Zivkovic,et al.  Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. , 2012, Bone.

[32]  Gregory Chang,et al.  Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results , 2012, European Radiology.

[33]  Ewald Moser,et al.  7‐T MR—from research to clinical applications? , 2012, NMR in biomedicine.

[34]  Gregory Chang,et al.  Comparison of a 28‐channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T , 2012, Journal of magnetic resonance imaging : JMRI.

[35]  Thomas M Link,et al.  osteoporosis imaging : State of the Art and Advanced Imaging 1 , 2022 .

[36]  Wolfgang Bogner,et al.  Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications , 2012, European Radiology.

[37]  K Ugurbil,et al.  Simultaneous bilateral hip joint imaging at 7 Tesla using fast transmit B1 shimming methods and multichannel transmission – a feasibility study , 2012, NMR in biomedicine.

[38]  Cem M. Deniz,et al.  Maximum efficiency radiofrequency shimming: Theory and initial application for hip imaging at 7 tesla , 2013, Magnetic resonance in medicine.

[39]  D. D’Lima,et al.  Assessment of cortical bone with clinical and ultrashort echo time sequences , 2013, Magnetic resonance in medicine.

[40]  Connie Y. Chang,et al.  MR imaging of normal hip anatomy. , 2013, Magnetic resonance imaging clinics of North America.