Closed-Form Rational Approximations of Fractional, Analog and Digital Differentiators/Integrators

This paper provides closed-form formulas for coefficients of convergents of some popular continued fraction expansions (CFEs) approximating s<sup>ν</sup>, with , and (2/T)<sup>ν</sup>((z-1)/(z+1))<sup>ν</sup>. The expressions of the coefficients are given in terms of ν and of the degree n of the polynomials defining the convergents. The formulas greatly reduce the effort for approximating fractional operators and show the equivalence between two well-known CFEs in a given condition.

[1]  Chien-Cheng Tseng,et al.  Design of Fractional Order Digital Differentiator Using Radial Basis Function , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[3]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional Circuit , 2011 .

[4]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[5]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Guido Maione,et al.  High-Speed Digital Realizations of Fractional Operators in the Delta Domain , 2011, IEEE Transactions on Automatic Control.

[7]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[8]  Guido Maione,et al.  Concerning continued fractions representation of noninteger order digital differentiators , 2006, IEEE Signal Processing Letters.

[9]  Nader Engheta Fractional calculus and fractional paradigm in electromagnetic theory , 1998, MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114).

[10]  Roberto Kawakami Harrop Galvão,et al.  Fractional Order Modeling of Large Three-Dimensional RC Networks , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Y. Chen,et al.  Realization of fractional order controllers , 2003 .

[12]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[13]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2003, Signal Process..

[14]  Guido Maione,et al.  Conditions for a Class of Rational Approximants of Fractional Differentiators/Integrators to Enjoy the Interlacing Property , 2011 .

[15]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[16]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[17]  José António Tenreiro Machado,et al.  Fractional calculus applications in signals and systems , 2006, Signal Processing.

[18]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[19]  M. Omair Ahmad,et al.  Exact fractional-order differentiators for polynomial signals , 2004, IEEE Signal Processing Letters.

[20]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[21]  M. Omair Ahmad,et al.  Results on maximally flat fractional-delay systems , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Guido Maione,et al.  Continued fractions approximation of the impulse response of fractional-order dynamic systems , 2008 .

[23]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[24]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[25]  Haakon Waadeland,et al.  Continued fractions with applications , 1994 .

[26]  O. Perron,et al.  Die Lehre von den Kettenbrüchen , 2013 .

[27]  P. Cruyssen A continued fraction algorithm , 1981 .

[28]  Dominik Sierociuk,et al.  Experimental Evidence of Variable-Order Behavior of Ladders and Nested Ladders , 2013, IEEE Transactions on Control Systems Technology.

[29]  Tryphon T. Georgiou,et al.  The fractional integrator as a control design element , 2007, 2007 46th IEEE Conference on Decision and Control.

[30]  Guido Maione,et al.  Thiele’s continued fractions in digital implementation of noninteger differintegrators , 2012, Signal Image Video Process..

[31]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.