Development, maintenance and disruption of the blood-brain barrier

[1]  D. Kaufer,et al.  Blood-brain barrier in health and disease. , 2015, Seminars in cell & developmental biology.

[2]  Li Liang,et al.  Secondary prevention after ischemic stroke or transient ischemic attack. , 2014, The American journal of medicine.

[3]  P. Fabene,et al.  Leukocyte trafficking mechanisms in epilepsy. , 2013, Molecular immunology.

[4]  M. Turner,et al.  Inflammation and neurovascular changes in amyotrophic lateral sclerosis , 2013, Molecular and Cellular Neuroscience.

[5]  Matthew P Jacobson,et al.  Predicting efflux ratios and blood-brain barrier penetration from chemical structure: combining passive permeability with active efflux by P-glycoprotein. , 2013, ACS chemical neuroscience.

[6]  Xiaoyu Xu,et al.  A Novel Brain Neurovascular Unit Model with Neurons, Astrocytes and Microvascular Endothelial Cells of Rat , 2013, International journal of biological sciences.

[7]  D. Janigro,et al.  A new dynamic in vitro modular capillaries-venules modular system: Cerebrovascular physiology in a box , 2013, BMC Neuroscience.

[8]  R. Daneman,et al.  Genetic mouse models to study blood–brain barrier development and function , 2013, Fluids and Barriers of the CNS.

[9]  M. Schwartz,et al.  Harnessing monocyte‐derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’ , 2013, The Journal of pathology.

[10]  Su-Hyun Kim,et al.  Clinical Efficacy of Plasmapheresis in Patients with Neuromyelitis Optica Spectrum Disorder and Effects on Circulating Anti-Aquaporin-4 Antibody Levels , 2013, Journal of clinical neurology.

[11]  E. Maggioli,et al.  Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications , 2012, Proceedings of the National Academy of Sciences.

[12]  M. Endres,et al.  The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury , 2012, Acta Neuropathologica.

[13]  B. Engelhardt,et al.  Capture, crawl, cross: the T cell code to breach the blood-brain barriers. , 2012, Trends in immunology.

[14]  T. Dalkara,et al.  Microvascular protection is essential for successful neuroprotection in stroke , 2012, Journal of neurochemistry.

[15]  Hartwig Wolburg,et al.  The disturbed blood-brain barrier in human glioblastoma. , 2012, Molecular aspects of medicine.

[16]  B. Zlokovic,et al.  Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. , 2012, Cold Spring Harbor perspectives in medicine.

[17]  J. Madden Role of the vascular endothelium and plaque in acute ischemic stroke , 2012, Neurology.

[18]  S. Benseler,et al.  Primary and Secondary Central Nervous System Vasculitis , 2012, Journal of child neurology.

[19]  B. Engelhardt,et al.  The anatomical and cellular basis of immune surveillance in the central nervous system , 2012, Nature Reviews Immunology.

[20]  U. Heinemann,et al.  Blood‐brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy , 2012, Glia.

[21]  G. Guillemin,et al.  The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. , 2012, Trends in parasitology.

[22]  D. Coulter,et al.  Astrocytic regulation of glutamate homeostasis in epilepsy , 2012, Glia.

[23]  S. Saiki,et al.  Blood—Brain Barrier Disruption is More Severe in Neuromyelitis Optica than in Multiple Sclerosis and Correlates with Clinical Disability , 2012, The Journal of international medical research.

[24]  Jeremy Seto,et al.  Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. , 2012, The Journal of clinical investigation.

[25]  M. de Curtis,et al.  Seizure‐induced brain‐borne inflammation sustains seizure recurrence and blood–brain barrier damage , 2012, Annals of neurology.

[26]  T. Vollmer,et al.  Update on PML and PML-IRIS Occurring in Multiple Sclerosis Patients Treated With Natalizumab , 2012, Journal of neuropathology and experimental neurology.

[27]  Stanley E. Lazic,et al.  Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for Predictive In Vitro Blood-Brain Barrier Models , 2012, PloS one.

[28]  Jeffrey A. Cohen,et al.  The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. , 2012, Immunotherapy.

[29]  D. Janigro Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood–brain barrier , 2012, Epilepsia.

[30]  W. Geldenhuys,et al.  Novel models for assessing blood–brain barrier drug permeation , 2012, Expert opinion on drug metabolism & toxicology.

[31]  Berislav V. Zlokovic,et al.  Apolipoprotein E controls cerebrovascular integrity via cyclophilin A , 2012, Nature.

[32]  G. Donnan,et al.  Clinical practice. Secondary prevention after ischemic stroke or transient ischemic attack. , 2012, The New England journal of medicine.

[33]  A. Verkman,et al.  Complement-dependent Cytotoxicity in Neuromyelitis Optica Requires Aquaporin-4 Protein Assembly in Orthogonal Arrays* , 2012, The Journal of Biological Chemistry.

[34]  D. Brites,et al.  Neurovascular Unit: a Focus on Pericytes , 2012, Molecular Neurobiology.

[35]  Joshua S Kaminker,et al.  Death receptors DR6 and TROY regulate brain vascular development. , 2012, Developmental cell.

[36]  R. Ransohoff,et al.  CXCL12-Induced Monocyte-Endothelial Interactions Promote Lymphocyte Transmigration Across an in Vitro Blood-Brain Barrier , 2012, Science Translational Medicine.

[37]  H. Ozyurt,et al.  Reactive oxygen species and ischemic cerebrovascular disease , 2012, Neurochemistry International.

[38]  Oliver Distler,et al.  Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis , 2012, Nature Communications.

[39]  Sookja K. Chung,et al.  Caveolin‐1 regulates nitric oxide‐mediated matrix metalloproteinases activity and blood–brain barrier permeability in focal cerebral ischemia and reperfusion injury , 2012, Journal of neurochemistry.

[40]  F. Charron,et al.  The Hedgehog Pathway Promotes Blood-Brain Barrier Integrity and CNS Immune Quiescence , 2011, Science.

[41]  B. Zlokovic Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders , 2011, Nature Reviews Neuroscience.

[42]  T. Kanda,et al.  Sera from neuromyelitis optica patients disrupt the blood–brain barrier , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[43]  J. Szmydynger-Chodobska,et al.  Blood–Brain Barrier Pathophysiology in Traumatic Brain Injury , 2011, Translational Stroke Research.

[44]  B. Zlokovic,et al.  Central nervous system pericytes in health and disease , 2011, Nature Neuroscience.

[45]  K. M. Baeten,et al.  Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke , 2011, Developmental neurobiology.

[46]  R. Uzbekov,et al.  Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. , 2011, Current neurovascular research.

[47]  Arne Klungland,et al.  Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet , 2011, Proceedings of the National Academy of Sciences.

[48]  B. Engelhardt,et al.  Claudin-1 induced sealing of blood–brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis , 2011, Acta Neuropathologica.

[49]  G. D. del Zoppo,et al.  Interendothelial Claudin-5 Expression Depends on Cerebral Endothelial Cell–Matrix Adhesion by β1-Integrins , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[50]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[51]  Ignacio A. Romero,et al.  Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models , 2011, Journal of Neuroscience Methods.

[52]  J. Bockaert,et al.  Epileptiform Activity Induces Vascular Remodeling and Zonula Occludens 1 Downregulation in Organotypic Hippocampal Cultures: Role of VEGF Signaling Pathways , 2011, The Journal of Neuroscience.

[53]  S. Liebner,et al.  Current concepts of blood-brain barrier development. , 2011, The International journal of developmental biology.

[54]  C. Daumas-Duport,et al.  Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. , 2011, Molecular pharmaceutics.

[55]  T. Hanafusa,et al.  Increased serum matrix metalloproteinase-9 in neuromyelitis optica: Implication of disruption of blood–brain barrier , 2011, Journal of Neuroimmunology.

[56]  P. Sanberg,et al.  Amyotrophic lateral sclerosis: A neurovascular disease , 2011, Brain Research.

[57]  Luca Cucullo,et al.  The role of shear stress in Blood-Brain Barrier endothelial physiology , 2011, BMC Neuroscience.

[58]  K. Abe,et al.  Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis , 2011, Journal of neuroscience research.

[59]  G. Bu,et al.  Apolipoprotein E Regulates the Integrity of Tight Junctions in an Isoform-dependent Manner in an in Vitro Blood-Brain Barrier Model* , 2011, The Journal of Biological Chemistry.

[60]  M. Mogi,et al.  Neurovascular coupling in cognitive impairment associated with diabetes mellitus. , 2011, Circulation journal : official journal of the Japanese Circulation Society.

[61]  K. Nagashima,et al.  GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier , 2011, Proceedings of the National Academy of Sciences.

[62]  Youliang Wang,et al.  Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. , 2011, Developmental cell.

[63]  Danica Stanimirovic,et al.  Engaging neuroscience to advance translational research in brain barrier biology , 2011, Nature Reviews Neuroscience.

[64]  Yunhui Liu,et al.  Specific Role of Tight Junction Proteins Claudin-5, Occludin, and ZO-1 of the Blood–Brain Barrier in a Focal Cerebral Ischemic Insult , 2011, Journal of Molecular Neuroscience.

[65]  H. D. de Vries,et al.  Radical changes in multiple sclerosis pathogenesis. , 2011, Biochimica et biophysica acta.

[66]  Johnathon R. Walls,et al.  Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor , 2011, Proceedings of the National Academy of Sciences.

[67]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[68]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[69]  W. Young,et al.  Essential Regulation of CNS Angiogenesis by the Orphan G Protein–Coupled Receptor GPR124 , 2010, Science.

[70]  Berislav V. Zlokovic,et al.  Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging , 2010, Neuron.

[71]  B. Barres,et al.  The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells , 2010, PloS one.

[72]  V. Lennon,et al.  Neurological autoimmunity targeting aquaporin-4 , 2010, Neuroscience.

[73]  R. Gold,et al.  Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis , 2010, Multiple sclerosis.

[74]  T. Nishioku,et al.  Lipopolysaccharide-Activated Microglia Induce Dysfunction of the Blood–Brain Barrier in Rat Microvascular Endothelial Cells Co-Cultured with Microglia , 2010, Cellular and Molecular Neurobiology.

[75]  M. Papadopoulos,et al.  Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. , 2010, Brain : a journal of neurology.

[76]  A. Palmer The role of the blood–CNS barrier in CNS disorders and their treatment , 2010, Neurobiology of Disease.

[77]  K. Plate,et al.  Differentiation of the brain vasculature: the answer came blowing by the Wnt , 2010, Journal of angiogenesis research.

[78]  P. Demetter,et al.  Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat , 2009, Brain Research.

[79]  Y. Itoyama,et al.  Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo , 2009, Annals of neurology.

[80]  P. Carvey,et al.  The blood–brain barrier in neurodegenerative disease: a rhetorical perspective , 2009, Journal of neurochemistry.

[81]  S. Sakoda,et al.  Neuromyelitis optica: Passive transfer to rats by human immunoglobulin. , 2009, Biochemical and biophysical research communications.

[82]  B. Engelhardt,et al.  Culture-Induced Changes in Blood—Brain Barrier Transcriptome: Implications for Amino-Acid Transporters in vivo , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[83]  U. Bogdahn,et al.  Cerebral Ischemia–Reperfusion Injury in Rats—A 3 T MRI Study on Biphasic Blood–Brain Barrier Opening and the Dynamics of Edema Formation , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[84]  R. Cohrs,et al.  Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment , 2009, The Lancet Neurology.

[85]  M. Shapira,et al.  Transcriptome Profiling Reveals TGF-β Signaling Involvement in Epileptogenesis , 2009, The Journal of Neuroscience.

[86]  D. Hellmann,et al.  Primary angiitis of the central nervous system. , 2009, Archives of neurology.

[87]  Calvin J Kuo,et al.  Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[88]  S. Moochhala,et al.  Involvement of ROS in BBB dysfunction , 2009, Free radical research.

[89]  Katie Hamm,et al.  apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. , 2008, The Journal of clinical investigation.

[90]  Antonio Osculati,et al.  A role for leukocyte-endothelial adhesion mechanisms in epilepsy , 2008, Nature Medicine.

[91]  A. McMahon,et al.  Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature , 2008, Science.

[92]  K. Plate,et al.  Wnt/β-catenin signaling controls development of the blood–brain barrier , 2008, The Journal of cell biology.

[93]  A. Bar-Or,et al.  Functional Consequences of Neuromyelitis Optica-IgG Astrocyte Interactions on Blood-Brain Barrier Permeability and Granulocyte Recruitment1 , 2008, The Journal of Immunology.

[94]  N. Nardi,et al.  In Search of the In Vivo Identity of Mesenchymal Stem Cells , 2008, Stem cells.

[95]  T. Pedley,et al.  Clinical practice. Initial management of epilepsy. , 2008, The New England journal of medicine.

[96]  W. Bartynski Posterior Reversible Encephalopathy Syndrome, Part 1: Fundamental Imaging and Clinical Features , 2008, American Journal of Neuroradiology.

[97]  P. Dore‐Duffy,et al.  Pericytes: pluripotent cells of the blood brain barrier. , 2008, Current pharmaceutical design.

[98]  R. Deane,et al.  ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration , 2008, Nature Neuroscience.

[99]  P. Couraud,et al.  Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier , 2008, The Journal of physiology.

[100]  T. Fujita,et al.  Hedgehog signalling in vascular development , 2008, Angiogenesis.

[101]  K. Leenders,et al.  Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA , 2008, Journal of Neural Transmission.

[102]  Eleonora Aronica,et al.  Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy , 2008, Neurobiology of Disease.

[103]  B. Zlokovic The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders , 2008, Neuron.

[104]  C. Lucchinetti,et al.  Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica , 2007, Neurology.

[105]  E. Haller,et al.  Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS , 2007, PloS one.

[106]  B. Weinshenker,et al.  The spectrum of neuromyelitis optica , 2007, The Lancet Neurology.

[107]  A. Bouthillier,et al.  Angiotensin II Controls Occludin Function and Is Required for Blood–Brain Barrier Maintenance: Relevance to Multiple Sclerosis , 2007, The Journal of Neuroscience.

[108]  J. Parisi,et al.  Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. , 2007, Brain : a journal of neurology.

[109]  Y. Itoyama,et al.  Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. , 2007, Brain : a journal of neurology.

[110]  Y. Itoyama,et al.  Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. , 2007, Brain : a journal of neurology.

[111]  C. Förster,et al.  Dexamethasone induces the expression of metalloproteinase inhibitor TIMP‐1 in the murine cerebral vascular endothelial cell line cEND , 2007, The Journal of physiology.

[112]  H. Takeuchi,et al.  Angiogenesis in primary central nervous system lymphoma (PCNSL) , 2007, Journal of Neuro-Oncology.

[113]  A. Hafezi-Moghadam,et al.  ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. , 2007, American journal of physiology. Cell physiology.

[114]  Imad Najm,et al.  Seizure‐Promoting Effect of Blood–Brain Barrier Disruption , 2007, Epilepsia.

[115]  M. Chopp,et al.  Angiopoietin1/TIE2 and VEGF/FLK1 Induced by MSC Treatment Amplifies Angiogenesis and Vascular Stabilization after Stroke , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[116]  William C. Aird,et al.  Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms , 2007, Circulation research.

[117]  W. Aird Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds , 2007, Circulation research.

[118]  Alon Friedman,et al.  TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. , 2007, Brain : a journal of neurology.

[119]  A. Proudfoot,et al.  The biological relevance of chemokine-proteoglycan interactions. , 2006, Biochemical Society transactions.

[120]  L. Claesson‐Welsh,et al.  VEGF receptor signalling ? in control of vascular function , 2006, Nature Reviews Molecular Cell Biology.

[121]  R. Milner,et al.  Fibronectin promotes brain capillary endothelial cell survival and proliferation through α5β1 and αvβ3 integrins via MAP kinase signalling , 2006 .

[122]  J. Cidlowski,et al.  Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. , 2005, The New England journal of medicine.

[123]  O. Wendler,et al.  Expression and function of laminins in the embryonic and mature vasculature. , 2005, Physiological reviews.

[124]  T. Handel,et al.  Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. , 2005, Annual review of biochemistry.

[125]  J. Gee,et al.  Astrocytes: regulation of brain homeostasis via apolipoprotein E. , 2005, The international journal of biochemistry & cell biology.

[126]  D. Mu,et al.  Integrin αvβ8-Mediated Activation of Transforming Growth Factor-β by Perivascular Astrocytes: An Angiogenic Control Switch , 2005 .

[127]  E. Waubant,et al.  An open label study of the effects of rituximab in neuromyelitis optica , 2005, Neurology.

[128]  T. Tsuruo,et al.  Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production , 2005, Brain Research.

[129]  E. Newman,et al.  Potassium buffering in the central nervous system , 2004, Neuroscience.

[130]  Ichiro Nakashima,et al.  A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis , 2004, The Lancet.

[131]  R. Nusse,et al.  The Wnt signaling pathway in development and disease. , 2004, Annual review of cell and developmental biology.

[132]  G. Steinberg,et al.  Protein Kinase C δ Mediates Cerebral Reperfusion Injury In Vivo , 2004, The Journal of Neuroscience.

[133]  D. Ferriero,et al.  Neutrophil protein kinase Cδ as a mediator of stroke-reperfusion injury , 2004 .

[134]  U. Reuter,et al.  Migraine aura: new information on underlying mechanisms , 2004, Current opinion in neurology.

[135]  U. Schlötzer-Schrehardt,et al.  Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development , 2004, Development.

[136]  H. Hammes,et al.  Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor , 2004, Thrombosis and Haemostasis.

[137]  Philippe Soriano,et al.  Additive Effects of PDGF Receptor β Signaling Pathways in Vascular Smooth Muscle Cell Development , 2003, PLoS biology.

[138]  E. Wagner,et al.  Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. , 2003, Developmental biology.

[139]  U. Landegren,et al.  Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. , 2003, Genes & development.

[140]  Hyun Seok Song,et al.  SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier , 2003, Nature Medicine.

[141]  I. Weissman,et al.  Wnt proteins are lipid-modified and can act as stem cell growth factors , 2003, Nature.

[142]  J. Arenillas,et al.  Matrix Metalloproteinase-9 Pretreatment Level Predicts Intracranial Hemorrhagic Complications After Thrombolysis in Human Stroke , 2003, Circulation.

[143]  J. Kuszak,et al.  Neurologic Defects and Selective Disruption of Basement Membranes in Mice Lacking Entactin-1/Nidogen-1 , 2002, Laboratory Investigation.

[144]  R. Hynes,et al.  Defective Associations between Blood Vessels and Brain Parenchyma Lead to Cerebral Hemorrhage in Mice Lacking αv Integrins , 2002, Molecular and Cellular Biology.

[145]  I. Campbell,et al.  Developmental Regulation of β1 Integrins during Angiogenesis in the Central Nervous System , 2002, Molecular and Cellular Neuroscience.

[146]  Hans Lassmann,et al.  A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. , 2002, Brain : a journal of neurology.

[147]  L. Reichardt,et al.  beta8 integrins are required for vascular morphogenesis in mouse embryos. , 2002, Development.

[148]  Xavier Alvarez,et al.  Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system , 2001, Glia.

[149]  R. Timpl,et al.  Perinatal Lethality and Endothelial Cell Abnormalities in Several Vessel Compartments of Fibulin-1-Deficient Mice , 2001, Molecular and Cellular Biology.

[150]  Takayuki Asahara,et al.  The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors , 2001, Nature Medicine.

[151]  Holger Gerhardt,et al.  Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular Morphogenesis , 2001, The Journal of cell biology.

[152]  J. Lawrenson,et al.  Pericytes: Cell Biology and Pathology , 2001, Cells Tissues Organs.

[153]  S. Rapoport Osmotic Opening of the Blood–Brain Barrier: Principles, Mechanism, and Therapeutic Applications , 2000, Cellular and Molecular Neurobiology.

[154]  W. Robberecht Oxidative stress in amyotrophic lateral sclerosis , 2000, Journal of Neurology.

[155]  N. Yamamoto,et al.  Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors , 1999, Neuroscience Research.

[156]  C. Kunsch,et al.  Oxidative stress as a regulator of gene expression in the vasculature. , 1999, Circulation research.

[157]  K. Furuuchi,et al.  Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. , 1999, Biochemical and biophysical research communications.

[158]  C. Betsholtz,et al.  Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. , 1999, Development.

[159]  B R Johansson,et al.  Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. , 1997, Science.

[160]  M. O’Donnell,et al.  IL-6 secreted by astroglial cells regulates Na-K-Cl cotransport in brain microvessel endothelial cells. , 1997, The American journal of physiology.

[161]  Hiroshi Yamamoto,et al.  Induction of various blood‐brain barrier properties in non‐neural endothelial cells by close apposition to co‐cultured astrocytes , 1997, Glia.

[162]  Lieve Moons,et al.  Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele , 1996, Nature.

[163]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[164]  A. McMahon,et al.  Wnt family proteins are secreted and associated with the cell surface. , 1993, Molecular biology of the cell.

[165]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[166]  A. Thompson,et al.  High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. , 1992, Journal of neurology, neurosurgery, and psychiatry.

[167]  R. Ransohoff,et al.  Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[168]  M. Wiley,et al.  Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. , 1981, Developmental biology.

[169]  G. Lenzi,et al.  Effects on EEG of the osmotic opening of the blood-brain barrier in rats. , 1980, Life sciences.

[170]  N. Abbott,et al.  An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. , 2012, Methods in molecular biology.

[171]  Ming Lu,et al.  Frontiers in Research Review: Neuron Damage and Protection Targeting metabolic inflammation in Parkinson’s disease: Implications for prospective therapeutic strategies , 2012 .

[172]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[173]  H. Galla,et al.  Methods to assess pericyte-endothelial cell interactions in a coculture model. , 2011, Methods in molecular biology.

[174]  R. Cayrol,et al.  CONTEMPORARY CHALLENGES IN AUTOIMMUNITY Effector Functions of Antiaquaporin-4 Autoantibodies in Neuromyelitis Optica , 2009 .

[175]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[176]  L. Lenz,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[177]  F. Orzi,et al.  The effects of 5-minute ischemia in mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes , 2004, Acta Neuropathologica.

[178]  E. Solito,et al.  Effect of steroids on brain lipocortin immunoreactivity. , 1994, Acta neurochirurgica. Supplementum.

[179]  J. Neuhaus Orthogonal arrays of particles in astroglial cells: Quantitative analysis of their density, size, and correlation with intramembranous particles , 1990, Glia.