GAT: A Unified GPU-Accelerated Framework for Processing Batch Trajectory Queries

The increasing amount of trajectory data facilitates a wide spectrum of practical applications in which large numbers of trajectory range and similarity queries are issued continuously. This calls for high-throughput trajectory query processing. Traditional in-memory databases lack considerations of the unique features of trajectories, while specialized trajectory query processing systems are typically designed for only one type of trajectory queries. This paper introduces GAT, a unified GPU-accelerated framework to process batch trajectory queries with the objective of high throughput. GAT follows the filtering-and-verification paradigm where we develop a novel index GTIDX for effectively filtering invalid trajectories on the CPU, and exploit the massive parallelism of the GPU for verification. To optimize the performance of GAT, we first greedily partition batch queries to reduce the amortized query processing latency. We then apply the Morton-based encoding method to coalesce data access requests from the GPU cores, and maintain a hash table to avoid redundant data transfer between CPU and GPU. To achieve load balance, we group size-varying cells into balanced blocks with similar numbers of trajectory points. Extensive experiments have been conducted over real-life trajectory datasets. The results show that GAT is efficient, scalable, and achieves high throughput with acceptable indexing cost.

[1]  Vaibhav Muddebihalkar,et al.  Searching Trajectories by Regions of Interest , 2018 .

[2]  Minyi Guo,et al.  Simba: Efficient In-Memory Spatial Analytics , 2016, SIGMOD Conference.

[3]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[4]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[5]  Panos Kalnis,et al.  User oriented trajectory search for trip recommendation , 2012, EDBT '12.

[6]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[7]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[8]  Salvatore Orlando,et al.  Processing streams of spatial k-NN queries and position updates on manycore GPUs , 2015, SIGSPATIAL/GIS.

[9]  Jörg Sander,et al.  PIST: An Efficient and Practical Indexing Technique for Historical Spatio-Temporal Point Data , 2008, GeoInformatica.

[10]  Jinwoong Kim,et al.  Co-processing heterogeneous parallel index for multi-dimensional datasets , 2018, J. Parallel Distributed Comput..

[11]  Yanmin Zhu,et al.  A GPU-Accelerated Framework for Processing Trajectory Queries , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[12]  Panos Kalnis,et al.  Trajectory Similarity Join in Spatial Networks , 2017, Proc. VLDB Endow..

[13]  Panos Kalnis,et al.  Personalized trajectory matching in spatial networks , 2014, The VLDB Journal.

[14]  Yu Zheng,et al.  T-Drive trajectory data sample , 2011 .

[15]  Simonas Saltenis Indexing the Positions of Continuously Moving Objects , 2017, Encyclopedia of GIS.

[16]  Joseph K. Bradley,et al.  Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.

[17]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[18]  Nicholas Jing Yuan,et al.  Online Discovery of Gathering Patterns over Trajectories , 2014, IEEE Transactions on Knowledge and Data Engineering.

[19]  Zi Huang,et al.  Unifying Multi-Source Social Media Data for Personalized Travel Route Planning , 2017, SIGIR.

[20]  Xing Xie,et al.  GeoLife: A Collaborative Social Networking Service among User, Location and Trajectory , 2010, IEEE Data Eng. Bull..

[21]  Henri Casanova,et al.  Distance Threshold Similarity Searches: Efficient Trajectory Indexing on the GPU , 2016, IEEE Transactions on Parallel and Distributed Systems.

[22]  R. Bayer,et al.  Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.

[23]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[24]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[25]  Le Gruenwald,et al.  High-Performance Spatial Query Processing on Big Taxi Trip Data Using GPGPUs , 2014, 2014 IEEE International Congress on Big Data.

[26]  Cláudio T. Silva,et al.  A GPU-based index to support interactive spatio-temporal queries over historical data , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[27]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[28]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[29]  Yunjun Gao,et al.  UlTraMan: A Unified Platform for Big Trajectory Data Management and Analytics , 2018, Proc. VLDB Endow..

[30]  Shazia Wasim Sadiq,et al.  SharkDB: An In-Memory Column-Oriented Trajectory Storage , 2014, CIKM.

[31]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[32]  Zhifeng Bao,et al.  DITA: Distributed In-Memory Trajectory Analytics , 2018, SIGMOD Conference.

[33]  Le Gruenwald,et al.  TKSimGPU : A Parallel Top-K Trajectory Similarity Query Processing Algorithm for GPGPUs , 2015 .

[34]  Wang-Chien Lee,et al.  HTTP: a new framework for bus travel time prediction based on historical trajectories , 2012, SIGSPATIAL/GIS.

[35]  Le Gruenwald,et al.  U2STRA: high-performance data management of ubiquitous urban sensing trajectories on GPGPUs , 2012, CDMW '12.

[36]  Henri Casanova,et al.  Indexing of Spatiotemporal Trajectories for Efficient Distance Threshold Similarity Searches on the GPU , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[37]  Michael Stonebraker,et al.  H-store: a high-performance, distributed main memory transaction processing system , 2008, Proc. VLDB Endow..

[38]  Sriram Raghavan,et al.  Indexing and matching trajectories under inconsistent sampling rates , 2015, 2015 IEEE 31st International Conference on Data Engineering.