Distributed Low-Rank Subspace Segmentation

Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is provably and empirically accurate on small problems but does not scale to the massive sizes of modern vision datasets. Moreover, past work aimed at scaling up low-rank matrix factorization is not applicable to LRR given its non-decomposable constraints. In this work, we propose a novel divide-and-conquer algorithm for large-scale subspace segmentation that can cope with LRR's non-decomposable constraints and maintains LRR's strong recovery guarantees. This has immediate implications for the scalability of subspace segmentation, which we demonstrate on a benchmark face recognition dataset and in simulations. We then introduce novel applications of LRR-based subspace segmentation to large-scale semi-supervised learning for multimedia event detection, concept detection, and image tagging. In each case, we obtain state-of-the-art results and order-of-magnitude speed ups.

[1]  Helen C. Shen,et al.  Linear Neighborhood Propagation and Its Applications , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[3]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[4]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[5]  Liang-Tien Chia,et al.  Local features are not lonely – Laplacian sparse coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[7]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[9]  Shuicheng Yan,et al.  Learning With $\ell ^{1}$-Graph for Image Analysis , 2010, IEEE Transactions on Image Processing.

[10]  Shuicheng Yan,et al.  Multi-task low-rank affinity pursuit for image segmentation , 2011, 2011 International Conference on Computer Vision.

[11]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[12]  Fei Wang,et al.  Label Propagation through Linear Neighborhoods , 2006, IEEE Transactions on Knowledge and Data Engineering.

[13]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..

[14]  C. W. Gear,et al.  Multibody Grouping from Motion Images , 1998, International Journal of Computer Vision.

[15]  Andrew W. Fitzgibbon,et al.  Efficient Object Category Recognition Using Classemes , 2010, ECCV.

[16]  Shuicheng Yan,et al.  Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation , 2012, AISTATS.

[17]  Patrice Y. Simard,et al.  Metrics and Models for Handwritten Character Recognition , 1998 .

[18]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[20]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[21]  KanadeTakeo,et al.  Shape and motion from image streams under orthography , 1992 .

[22]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[23]  Ameet Talwalkar,et al.  On sampling-based approximate spectral decomposition , 2009, ICML '09.

[24]  Stephen J. Wright,et al.  Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.

[25]  Shuicheng Yan,et al.  Active Subspace: Toward Scalable Low-Rank Learning , 2012, Neural Computation.

[26]  Inderjit S. Dhillon,et al.  Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems , 2012, 2012 IEEE 12th International Conference on Data Mining.

[27]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[28]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[29]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ran He,et al.  Nonnegative sparse coding for discriminative semi-supervised learning , 2011, CVPR 2011.

[31]  Nenghai Yu,et al.  Non-negative low rank and sparse graph for semi-supervised learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Peter J. Haas,et al.  Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.

[33]  Michael Elad,et al.  Probabilistic Subspace Clustering Via Sparse Representations , 2013, IEEE Signal Processing Letters.

[34]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.