Modeling human behavior at a large scale

Until recently, complex phenomena—such as human behavior and disease epidemics—have been modeled primarily at an aggregate level. Detailed studies have been limited to small domains encompassing only a few subjects, as scaling the methods involved poses considerable challenges in terms of cost, human effort required, computational bottlenecks, and data sources available. With the surge of online social media and sensor networks, the abundance of interesting and publicly accessible data is beginning to increase. However, we also need the ability to reason about it efficiently. The underlying theme of this thesis is the unification and data mining of diverse, noisy, and incomplete sensory data over large numbers of individuals. We show that the mined patterns can be leveraged in predictive models of human behavior and other phenomena at a large scale. We find that raw sensory data linked with the content of users' online communication, the explicit as well as the implicit online social interactions, and interpersonal relationships are rich information sources upon which strong machine learning models can be built. Example domains where such models apply include understanding human activities, predicting people's location and social ties from their online behavior, and predicting the emergence of global epidemics from day-to-day interpersonal interactions.

[1]  Cecilia Mascolo,et al.  Mobility Models for Systems Evaluation , 2009, Middleware for Network Eccentric and Mobile Applications.

[2]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[3]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[4]  Pedro M. Domingos Multi-Relational Record Linkage , 2003 .

[5]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[6]  Paulo Shakarian,et al.  Using Generalized Annotated Programs to Solve Social Network Optimization Problems , 2010, ICLP.

[7]  J. Hsu,et al.  Joint Recognition of Multiple Concurrent Activities using Factorial Conditional Random Fields , 2007 .

[8]  Matei Ripeanu,et al.  Cheaters in the Steam Community Gaming Social Network , 2011, ArXiv.

[9]  Henry A. Kautz,et al.  Predicting Disease Transmission from Geo-Tagged Micro-Blog Data , 2012, AAAI.

[10]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[11]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[12]  Larry S. Davis,et al.  Event Modeling and Recognition Using Markov Logic Networks , 2008, ECCV.

[13]  Bin Jiang,et al.  Characterizing the human mobility pattern in a large street network. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming - Theory and Applications , 2008, Probabilistic Inductive Logic Programming.

[15]  D. Lazer,et al.  Inferring Social Network Structure using Mobile Phone Data , 2006 .

[16]  Wolfram Burgard,et al.  CRF-Matching: Conditional Random Fields for Feature-Based Scan Matching , 2008 .

[17]  Manuela M. Veloso,et al.  Feature selection for activity recognition in multi-robot domains , 2008, AAAI 2008.

[18]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[19]  Injong Rhee,et al.  SLAW: A New Mobility Model for Human Walks , 2009, IEEE INFOCOM 2009.

[20]  Stefan Wrobel Inductive Logic Programming , 1996, Lecture Notes in Computer Science.

[21]  Éric Gaussier,et al.  A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation , 2005, ECIR.

[22]  Pedro M. Domingos,et al.  Joint Inference in Information Extraction , 2007, AAAI.

[23]  Jörg Ott,et al.  Working day movement model , 2008, MobilityModels '08.

[24]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[25]  Naiji Lu,et al.  Connecting the invisible dots: reaching lesbian, gay, and bisexual adolescents and young adults at risk for suicide through online social networks. , 2009, Social science & medicine.

[26]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[27]  Hassan A. Karimi,et al.  Location awareness through trajectory prediction , 2006, Comput. Environ. Urban Syst..

[28]  Scott A. Golder,et al.  Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength Across Diverse Cultures , 2011 .

[29]  Luc De Raedt,et al.  Bayesian Logic Programs , 2001, ILP Work-in-progress reports.

[30]  Stephen Muggleton,et al.  Learning Structure and Parameters of Stochastic Logic Programs , 2002, ILP.

[31]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[32]  Mark Dredze,et al.  You Are What You Tweet: Analyzing Twitter for Public Health , 2011, ICWSM.

[33]  Henry A. Kautz,et al.  Modeling Spread of Disease from Social Interactions , 2012, ICWSM.

[34]  Eric Horvitz,et al.  Predestination: Inferring Destinations from Partial Trajectories , 2006, UbiComp.

[35]  Joshua B. Tenenbaum,et al.  Bayesian Theory of Mind: Modeling Joint Belief-Desire Attribution , 2011, CogSci.

[36]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[37]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..

[38]  L. Bettencourt,et al.  A unified theory of urban living , 2010, Nature.

[39]  Manuela M. Veloso,et al.  Conditional random fields for activity recognition , 2007, AAMAS '07.

[40]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[41]  Pedro M. Domingos,et al.  Statistical predicate invention , 2007, ICML '07.

[42]  B. Truman,et al.  CDC Health Disparities and Inequalities Report — United States, 2011 , 2011 .

[43]  Ahmed Helmy,et al.  Mining behavioral groups in large wireless LANs , 2006, MobiCom '07.

[44]  Nigel Collier,et al.  OMG U got flu? Analysis of shared health messages for bio-surveillance , 2011, Semantic Mining in Biomedicine.

[45]  Alberto Maria Segre,et al.  The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic , 2011, PloS one.

[46]  Nirmala Shenoy,et al.  A 2-D random-walk mobility model for location-management studies in wireless networks , 2004, IEEE Transactions on Vehicular Technology.

[47]  Eric Horvitz,et al.  Collaboration and shared plans in the open world: studies of ridesharing , 2009, IJCAI 2009.

[48]  Irfan Essa,et al.  Recognizing Multitasked Activities using Stochastic Context-Free Grammar , 2001 .

[49]  Eric Horvitz,et al.  Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service , 2005, UAI.

[50]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[51]  Nikos Mamoulis,et al.  Discovery of Periodic Patterns in Spatiotemporal Sequences , 2007, IEEE Transactions on Knowledge and Data Engineering.

[52]  David Kotz,et al.  Identifying Unusual Days , 2011, J. Comput. Sci. Eng..

[53]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[54]  Henry A. Kautz,et al.  Location-Based Activity Recognition using Relational Markov Networks , 2005, IJCAI.

[55]  Milind Tambe,et al.  Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach , 2002, J. Artif. Intell. Res..

[56]  Andrew McCallum,et al.  An Integrated, Conditional Model of Information Extraction and Coreference with Appli , 2004, UAI.

[57]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[58]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[59]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[60]  Gregory D. Abowd,et al.  Cyberguide: A mobile context‐aware tour guide , 1997, Wirel. Networks.

[61]  Joshua B. Tenenbaum,et al.  Bayesian models of human action understanding , 2005, NIPS.

[62]  Mark S. Fox,et al.  COOL: A Language for Describing Coordination in Multi Agent Systems , 1995, ICMAS.

[63]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[64]  John Krumm,et al.  Exploring end user preferences for location obfuscation, location-based services, and the value of location , 2010, UbiComp.

[65]  Dan Cosley,et al.  Inferring social ties from geographic coincidences , 2010, Proceedings of the National Academy of Sciences.

[66]  Sebastian Thrun,et al.  Recognizing Activities with Multiple Cues , 2007, Workshop on Human Motion.

[67]  Christos Faloutsos,et al.  Prediction and indexing of moving objects with unknown motion patterns , 2004, SIGMOD '04.

[68]  Cristina E. Manfredotti,et al.  Modeling and Inference with Relational Dynamic Bayesian Networks , 2009, Canadian AI.

[69]  Daphne Koller,et al.  Probabilistic Relational Models , 1999, ILP.

[70]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[71]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[72]  Po-An Chen,et al.  Better vaccination strategies for better people , 2010, EC '10.

[73]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[74]  Andrew McCallum,et al.  Joint deduplication of multiple record types in relational data , 2005, CIKM '05.

[75]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[76]  Kristian Kersting,et al.  TildeCRF: Conditional Random Fields for Logical Sequences , 2006, ECML.

[77]  Kyunghan Lee,et al.  On the Levy-Walk Nature of Human Mobility , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[78]  Chris L. Baker,et al.  Goal Inference as Inverse Planning , 2007 .

[79]  Noah D. Goodman,et al.  Theory-based Social Goal Inference , 2008 .

[80]  Kevin C. Almeroth,et al.  Towards realistic mobility models for mobile ad hoc networks , 2003, MobiCom '03.

[81]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[82]  John Krumm,et al.  Far Out: Predicting Long-Term Human Mobility , 2012, AAAI.

[83]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[84]  Alex Pentland,et al.  Honest Signals - How They Shape Our World , 2008 .

[85]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[86]  Henry A. Kautz,et al.  Constraint Propagation for Efficient Inference in Markov Logic , 2011, CP.

[87]  Philip S. Yu,et al.  On Periodicity Detection and Structural Periodic Similarity , 2005, SDM.

[88]  Mark Dredze,et al.  A Model for Mining , 2011 .

[89]  Jodie A. Baird,et al.  Discerning intentions in dynamic human action , 2001, Trends in Cognitive Sciences.

[90]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.

[91]  Daniel Dajun Zeng,et al.  A Geospatial Analysis on the Potential Value of News Comments in Infectious Disease Surveillance , 2011, PAISI.

[92]  Kazutoshi Sumiya,et al.  Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection , 2010, LBSN '10.

[93]  Heiner Stuckenschmidt,et al.  A Statistical-Relational Activity Recognition Framework for Ambient Assisted Living Systems , 2010, ISAmI.

[94]  Thomas G. Dietterich,et al.  Learning first-order probabilistic models with combining rules , 2005, Annals of Mathematics and Artificial Intelligence.

[95]  Weng-Keen Wong,et al.  Logical Hierarchical Hidden Markov Models for Modeling User Activities , 2008, ILP.

[96]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[97]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[98]  Shengming Jiang,et al.  A prediction-based link availability estimation for mobile ad hoc networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[99]  Henry Kautz,et al.  Modeling Success, Failure, and Intent of Multi-Agent Activities Under Severe Noise , 2012, Mobile Context Awareness.

[100]  Ed H. Chi,et al.  Tweets from Justin Bieber's heart: the dynamics of the location field in user profiles , 2011, CHI.

[101]  Cristina E. Manfredotti Learning RDBNs for Activity Recognition , 2010 .

[102]  Aron Culotta,et al.  Towards detecting influenza epidemics by analyzing Twitter messages , 2010, SOMA '10.

[103]  M. Osborne,et al.  Using Prediction Markets and Twitter to Predict a Swine Flu Pandemic , 2009 .

[104]  B. Wellman,et al.  Imagining Twitter as an Imagined Community , 2011 .

[105]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[106]  J. Brownstein,et al.  Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. , 2012, The American journal of tropical medicine and hygiene.

[107]  L. De Raedt,et al.  Logical Hidden Markov Models , 2011, J. Artif. Intell. Res..

[108]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[109]  Dieter Fox,et al.  CRF-Filters: Discriminative Particle Filters for Sequential State Estimation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[110]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[111]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[112]  Yuji Matsumoto,et al.  Jointly Identifying Temporal Relations with Markov Logic , 2009, ACL.

[113]  Luc De Raedt,et al.  Probabilistic inductive logic programming , 2004 .

[114]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[115]  Pascal Denis,et al.  Joint Determination of Anaphoricity and Coreference Resolution using Integer Programming , 2007, NAACL.

[116]  Brian Roark,et al.  Discriminative Language Modeling with Conditional Random Fields and the Perceptron Algorithm , 2004, ACL.

[117]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[118]  Lars Backstrom,et al.  Find me if you can: improving geographical prediction with social and spatial proximity , 2010, WWW '10.

[119]  Pedro M. Domingos,et al.  Learning Markov logic network structure via hypergraph lifting , 2009, ICML '09.

[120]  John Krumm,et al.  Learning Time-Based Presence Probabilities , 2011, Pervasive.

[121]  Keith C. Clarke,et al.  Loose-Coupling a Cellular Automaton Model and GIS: Long-Term Urban Growth Prediction for San Francisco and Washington/Baltimore , 1998, Int. J. Geogr. Inf. Sci..

[122]  Pedro M. Domingos,et al.  Deep transfer via second-order Markov logic , 2009, ICML '09.

[123]  Henry A. Kautz,et al.  Finding your friends and following them to where you are , 2012, WSDM '12.

[124]  Ahmed Helmy,et al.  Modeling Time-Variant User Mobility in Wireless Mobile Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[125]  Hung Hai Bui,et al.  A General Model for Online Probabilistic Plan Recognition , 2003, IJCAI.

[126]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[127]  D. Sculley,et al.  Detecting adversarial advertisements in the wild , 2011, KDD.

[128]  Qiang Yang,et al.  Real world activity recognition with multiple goals , 2008, UbiComp.

[129]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[130]  Enza Messina,et al.  Relational Dynamic Bayesian Networks to Improve Multi-target Tracking , 2009, ACIVS.

[131]  Philip S. Yu,et al.  Mining Asynchronous Periodic Patterns in Time Series Data , 2003, IEEE Trans. Knowl. Data Eng..

[132]  Larry S. Davis,et al.  Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos , 2009, CVPR.

[133]  Henry A. Kautz,et al.  Location-Based Reasoning about Complex Multi-Agent Behavior , 2012, J. Artif. Intell. Res..

[134]  Ahmed Helmy,et al.  Understanding Periodicity and Regularity of Nodal Encounters in Mobile Networks: A Spectral Analysis , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[135]  John Krumm,et al.  PreHeat: controlling home heating using occupancy prediction , 2011, UbiComp '11.

[136]  Alan Fern,et al.  Bayesian role discovery for multi-agent reinforcement learning , 2010, AAMAS.

[137]  Raymond J. Mooney,et al.  Bottom-up learning of Markov logic network structure , 2007, ICML '07.

[138]  Stefano Ferilli,et al.  Discriminative Structure Learning of Markov Logic Networks , 2008, ILP.

[139]  Pedro M. Domingos,et al.  Hybrid Markov Logic Networks , 2008, AAAI.

[140]  Jianqiang Shen,et al.  Activity recognition in desktop environments , 2009 .

[141]  M. Keeling,et al.  Networks and epidemic models , 2005, Journal of The Royal Society Interface.

[142]  Luciano Serafini,et al.  Extending Multi-agent Cooperation by Overhearing , 2001, CoopIS.

[143]  Qing Liu,et al.  A Hybrid Prediction Model for Moving Objects , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[144]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[145]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[146]  A. S. St Leger,et al.  Statistical Models in Epidemiology , 1994 .

[147]  José Ignacio Alvarez-Hamelin,et al.  A low complexity visualization tool that helps to perform complex systems analysis , 2008 .

[148]  Luc De Raedt,et al.  Relational transformation-based tagging for human activity recognition , 2007 .

[149]  Jiawei Han,et al.  Mining periodic behaviors for moving objects , 2010, KDD.

[150]  J. Cooley,et al.  The Fast Fourier Transform , 1975 .

[151]  Emily H. Chan,et al.  Participatory Epidemiology: Use of Mobile Phones for Community-Based Health Reporting , 2010, PLoS medicine.

[152]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[153]  David Kotz,et al.  Periodic properties of user mobility and access-point popularity , 2007, Personal and Ubiquitous Computing.

[154]  Joshua B. Tenenbaum,et al.  Help or Hinder: Bayesian Models of Social Goal Inference , 2009, NIPS.

[155]  Norman M. Sadeh,et al.  Rethinking location sharing: exploring the implications of social-driven vs. purpose-driven location sharing , 2010, UbiComp.

[156]  David A. Smith,et al.  Dependency Parsing by Belief Propagation , 2008, EMNLP.

[157]  Pedro M. Domingos,et al.  Joint Unsupervised Coreference Resolution with Markov Logic , 2008, EMNLP.

[158]  Cecilia Mascolo,et al.  A Tale of Many Cities: Universal Patterns in Human Urban Mobility , 2011, PloS one.

[159]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, Web Intelligence.

[160]  Ben Taskar,et al.  Link Prediction in Relational Data , 2003, NIPS.

[161]  Cecilia Mascolo,et al.  NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems , 2011, Pervasive.

[162]  Changhu Wang,et al.  Equip tourists with knowledge mined from travelogues , 2010, WWW '10.

[163]  Pedro M. Domingos,et al.  Sound and Efficient Inference with Probabilistic and Deterministic Dependencies , 2006, AAAI.

[164]  David Kotz,et al.  Extracting a Mobility Model from Real User Traces , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[165]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[166]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[167]  Daniel S. Weld,et al.  Temporal Information Extraction , 2010, AAAI.

[168]  Taisuke Sato,et al.  New Advances in Logic-Based Probabilistic Modeling by PRISM , 2008, Probabilistic Inductive Logic Programming.

[169]  Paulo Shakarian,et al.  SCARE: A Case Study with Baghdad , 2011 .

[170]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[171]  Sebastian Riedel Improving the Accuracy and Efficiency of MAP Inference for Markov Logic , 2008, UAI.

[172]  Raymond J. Mooney,et al.  Discriminative structure and parameter learning for Markov logic networks , 2008, ICML '08.

[173]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[174]  Alan F. Blackwell,et al.  Goal recognition through goal graph analysis , 2001 .

[175]  Tong Liu,et al.  Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks , 1998, IEEE J. Sel. Areas Commun..

[176]  Henry A. Kautz,et al.  Recognizing Multi-Agent Activities from GPS Data , 2010, AAAI.

[177]  S. Stouffer Intervening opportunities: a theory relating mobility and distance , 1940 .

[178]  Alan Fern,et al.  Learning and Transferring Roles in Multi-Agent Reinforcement , 2008 .

[179]  J. A. Schaefer,et al.  Caribou movement as a correlated random walk , 2000, Oecologia.

[180]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[181]  Pedro M. Domingos,et al.  Discriminative Training of Markov Logic Networks , 2005, AAAI.

[182]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[183]  Pedro M. Domingos,et al.  Learning the structure of Markov logic networks , 2005, ICML.

[184]  Mor Naaman,et al.  Is it really about me?: message content in social awareness streams , 2010, CSCW '10.

[185]  Nello Cristianini,et al.  Flu Detector - Tracking Epidemics on Twitter , 2010, ECML/PKDD.

[186]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[187]  Wayne M Getz,et al.  Methods for assessing movement path recursion with application to African buffalo in South Africa. , 2009, Ecology.

[188]  Pedro M. Domingos,et al.  Markov Logic in Infinite Domains , 2007, UAI.