An Output-Capacitorless Low-Dropout Regulator With Direct Voltage-Spike Detection

An output-capacitorless low-dropout regulator (LDO) with a direct voltage-spike detection circuit is presented in this paper. The proposed voltage-spike detection is based on capacitive coupling. The detection circuit makes use of the rapid transient voltage at the LDO output to increase the bias current momentarily. Hence, the transient response of the LDO is significantly enhanced due to the improvement of the slew rate at the gate of the power transistor. The proposed voltage-spike detection circuit is applied to an output-capacitorless LDO implemented in a standard 0.35-¿m CMOS technology (where VTHN ¿ 0.5 V and VTHP ¿ -0.65 V). Experimental results show that the LDO consumes 19 ¿A only. It regulates the output at 0.8 V from a 1-V supply, with dropout voltage of 200 mV at the maximum output current of 66.7 mA. The voltage spike and the recovery time of the LDO with the proposed voltage-spike detection circuit are reduced to about 70 mV and 3 ¿s, respectively, whereas they are more than 420 mV and 30 ¿s for the LDO without the proposed detection circuit.

[1]  Tsz Yin Man,et al.  A High Slew-Rate Push–Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Shen-Iuan Liu,et al.  CMOS low dropout linear regulator with single Miller capacitor , 2006 .

[3]  José Silva-Martínez,et al.  A frequency compensation scheme for LDO voltage regulators , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Ramón González Carvajal,et al.  A free but efficient low-voltage class-AB two-stage operational amplifier , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  D.D. Buss Technology in the Internet age , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[6]  Ramón González Carvajal,et al.  The flipped voltage follower: a useful cell for low-voltage low-power circuit design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Ka Nang Leung,et al.  Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Wing-Hung Ki,et al.  A 0.9V 0.35 μm Adaptively Biased CMOS LDO Regulator with Fast Transient Response , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  T. Karnik,et al.  Area-efficient linear regulator with ultra-fast load regulation , 2005, IEEE Journal of Solid-State Circuits.

[10]  Gabriel A. Rincon-Mora,et al.  A low-voltage, low quiescent current, low drop-out regulator , 1998, IEEE J. Solid State Circuits.

[11]  Ka Nang Leung,et al.  A Low-Dropout Regulator for SoC With $Q$-Reduction , 2007, IEEE Journal of Solid-State Circuits.

[12]  K. Leung,et al.  A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation , 2003, IEEE J. Solid State Circuits.