From abstract topology to real thermodynamic brain activity

Recent approaches to brain phase spaces reinforce the foremost role of symmetries and energy requirements in the assessment of nervous activity. Changes in thermodynamic parameters and dimensions occur in the brain during symmetry breakings and transitions from one functional state to another. Based on topological results and string-like trajectories into nervous energy landscapes, we provide a novel method for the evaluation of energetic features and constraints in different brain functional activities. We show how abstract approaches, namely the Borsuk–Ulam theorem and its variants, may display real, energetic physical counterparts. When topology meets the physics of the brain, we arrive at a general model of neuronal activity, in terms of multidimensional manifolds and computational geometry, that has the potential to be operationalized.

[1]  Pablo Varona,et al.  Transient Dynamics in Complex Systems: Heteroclinic Sequences with Multidimensional Unstable Manifolds , 2013 .

[2]  Alexander Mathis,et al.  Connecting multiple spatial scales to decode the population activity of grid cells , 2015, Science Advances.

[3]  Arturo Tozzi,et al.  Building a minimum frustration framework for brain functions over long time scales , 2016, Journal of neuroscience research.

[4]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[5]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  Arturo Tozzi,et al.  Information processing in the CNS: a supramolecular chemistry? , 2015, Cognitive Neurodynamics.

[7]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[8]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[9]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[10]  Woochang Lim,et al.  Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons , 2014, Cognitive Neurodynamics.

[11]  Werner Hubig On Physical Geometry , 1962 .

[12]  Jin Wang,et al.  Nonequilibrium landscape theory of neural networks , 2013, Proceedings of the National Academy of Sciences.

[13]  M. Serrano,et al.  Hidden geometric correlations in real multiplex networks , 2016, Nature Physics.

[14]  M. Zare,et al.  Criticality and avalanches in neural networks , 2013 .

[15]  Emmanuelle Tognoli,et al.  On the Brain’s Dynamical Complexity: Coupling and Causal Influences Across Spatiotemporal Scales , 2013 .

[16]  V. Dol'nikov,et al.  A generalization of the ham sandwich theorem , 1992 .

[17]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[18]  J. Kelso,et al.  Nonequilibrium phase transitions in coordinated biological motion: Critical slowing down and switching time , 1987 .

[19]  J. Waters,et al.  Brain surface temperature under a craniotomy. , 2012, Journal of neurophysiology.

[20]  O. Güntürkün,et al.  An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning , 2016, Behavioural Brain Research.

[21]  Simon B. Laughlin,et al.  Balanced Excitatory and Inhibitory Synaptic Currents Promote Efficient Coding and Metabolic Efficiency , 2013, PLoS Comput. Biol..

[22]  Karl J. Friston,et al.  Towards a Neuronal Gauge Theory , 2016, PLoS biology.

[23]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[24]  J. F. Peters,et al.  Region-Based Borsuk-Ulam Theorem , 2016 .

[25]  Viktor K. Jirsa,et al.  A theoretical model of phase transitions in the human brain , 1994, Biological Cybernetics.

[26]  Naoki Masuda,et al.  A pairwise maximum entropy model accurately describes resting-state human brain networks , 2013, Nature Communications.

[27]  J. Touboul Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions , 2012 .

[28]  David Papo,et al.  Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience , 2014, Front. Syst. Neurosci..

[29]  David Ian Olive,et al.  Introduction to string theory: its structure and its uses , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Anna Di Concilio Point-Free Geometries: Proximities and Quasi-Metrics , 2013, Math. Comput. Sci..

[31]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[32]  Rubin Wang,et al.  Neurodynamics of up and down transitions in a single neuron , 2014, Cognitive Neurodynamics.

[33]  D. Llano,et al.  Brain temperature and its fundamental properties: a review for clinical neuroscientists , 2014, Front. Neurosci..

[34]  S. Gabrieli Toward discovery science of human brain function , 2010 .

[35]  Yating Zhu,et al.  Optimal path-finding through mental exploration based on neural energy field gradients , 2016, Cognitive Neurodynamics.

[36]  J. F. Peters,et al.  String-Based Borsuk-Ulam Theorem , 2016, 1606.04031.

[37]  Albert Diaz-Guilera,et al.  An algebraic topological method for multimodal brain networks comparisons , 2015, Front. Psychol..

[38]  P. Goddard,et al.  Algebras, Lattices and Strings , 1985 .

[39]  Flavia-Corina Mitroi-Symeonidis Convexity and sandwich theorems , 2015 .

[40]  Petra Ostermann Using The Borsuk Ulam Theorem Lectures On Topological Methods In Combinatorics And Geometry , 2016 .

[41]  Emi Tanaka,et al.  Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity , 2016, Front. Hum. Neurosci..

[42]  In-Sook Kim EXTENSIONS OF THE BORSUK-ULAM THEOREM , 1997 .

[43]  M. Fee,et al.  Using temperature to analyze temporal dynamics in the songbird motor pathway , 2008, Nature.

[44]  Karl J. Friston,et al.  Information and Efficiency in the Nervous System—A Synthesis , 2013, PLoS Comput. Biol..

[45]  Cheree James,et al.  Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images , 2012, Front. Physio..

[46]  James F. Peters,et al.  Towards a fourth spatial dimension of brain activity , 2016, Cognitive Neurodynamics.

[47]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[48]  Nick C Fox,et al.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease , 2014, PLoS ONE.

[49]  Arturo Tozzi,et al.  New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter , 2016, Front. Hum. Neurosci..

[50]  Viktor K. Jirsa,et al.  Connecting Cortical and Behavioral Dynamics: Bimanual Coordination , 1998, Neural Computation.

[51]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[52]  Naoki Masuda,et al.  Network-dependent modulation of brain activity during sleep , 2014, NeuroImage.

[53]  Dierk Schleicher Hausdorff Dimension, Its Properties, and Its Surprises , 2007, Am. Math. Mon..

[54]  Arturo Tozzi,et al.  A topological approach unveils system invariances and broken symmetries in the brain , 2016, Journal of neuroscience research.

[55]  Christopher T. J. Dodson,et al.  A User’s Guide to Algebraic Topology , 1996 .

[56]  R. Disalle Spacetime theory as physical geometry , 1995 .

[57]  C. Petty,et al.  Equilateral sets in Minkowski spaces , 1971 .

[58]  Dante R. Chialvo,et al.  What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations , 2010, Front. Physio..

[59]  Jeffrey R. Weeks,et al.  The Shape of Space , 1986 .

[60]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[61]  James F. Peters,et al.  Brain tissue tessellation shows absence of canonical microcircuits , 2016, Neuroscience Letters.

[62]  J. Detre,et al.  Brain Entropy Mapping Using fMRI , 2014, PloS one.

[63]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[64]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[65]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[66]  Giangiacomo Gerla,et al.  Quasi-metric spaces and point-free geometry , 2006, Mathematical Structures in Computer Science.

[67]  G. La Camera,et al.  Stimuli Reduce the Dimensionality of Cortical Activity , 2015, bioRxiv.

[68]  James F. Peters,et al.  Computational Proximity - Excursions in the Topology of Digital Images , 2016, Intelligent Systems Reference Library.

[69]  James F. Peters,et al.  Applications of near sets , 2012 .