A method for balloon trajectory control
暂无分享,去创建一个
Abstract A balloon trajectory control system is discussed that is under development for use on NASA's Ultra Long Duration Balloon Project. The trajectory control system exploits the natural wind field variation with altitude to generate passive lateral control forces on a balloon using a tether-deployed aerodynamic surface below the balloon. A lifting device, such as a wing on end, is suspended on a tether well beneath the balloon to take advantage of this variation in wind velocity with altitude. The wing generates a horizontal lift force that can be directed over a wide range of angles. This force, transmitted to the balloon by a tether, alters the balloon's path providing a bias velocity of a few meters per second to the balloon drift rate. The trajectory control system enables the balloon to avoid hazards, reach targets, steer around avoidance countries and select convenient landing zones. No longer will balloons be totally at the mercy of the winds. Tests in April 1999 of a dynamically-scaled model of the trajectory control system were carried out by Global Aerospace Corporation in ground level winds up to 15 m/s. The size of the scale model was designed to simulate the behavior of the full scale trajectory control system operating at 20 km altitude. The model confirmed many aspects of trajectory control system performance and the results will be incorporated into future development.
[1] Kim M. Aaron,et al. Global stratospheric balloon constellations , 2002 .
[2] J. D. Beemer,et al. POBAL-S, the analysis and design of a high altitude airship. Final report, October 1972--March 1975. [For station keeping at an altitude of 21 km for 7 days; 500 W fuel cell power supply] , 1975 .
[3] Kim M. Aaron,et al. Balloon trajectory control , 1999 .
[4] Andrew S. Carten. An investigation of the applicability of high altitude, Lighter-Than-Air (LTA) vehicles to the tactical communications relay problem , 1974 .