Hysteresis characterization using charge feedback control for a LIPCA device

In this paper, we study the no-load behavior of a lightweight piezo-composite curved actuator (LIPCA) subjected to voltage and charge control. First, we examine the effect of hysteresis and creep when the actuator is voltage controlled at a slow scan speed. The experimental results show that creep increases the displacement hysteresis by over 25% when scanning at 1/60 Hz. Afterwards, we discuss the design and implementation of a charge-feedback circuit to control the displacement of the actuator. The hysteresis curves between voltage- and charge-control modes are compared for the scan frequencies of 1 and 5 Hz. The results show that charge control (compared to voltage control) of a LIPCA device exhibits significantly less hysteresis, over 80% less.

[1]  Hiroshi Kaizuka Application of capacitor insertion method to scanning tunneling microscopes , 1989 .

[2]  R. Bryant,et al.  Piezoelectric Actuators for Synthetic Jet Applications , 2003 .

[3]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[4]  John A. Main,et al.  Precision position-control of piezoelectric actuators using charge feedback , 1995, Smart Structures.

[5]  K. Furutani,et al.  Displacement control of piezoelectric element by feedback of induced charge , 1998 .

[6]  John A. Main,et al.  Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls , 1997 .

[7]  S. O. Reza Moheimani,et al.  Resonant control of structural vibration using charge-driven piezoelectric actuators , 2005, IEEE Transactions on Control Systems Technology.

[8]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[9]  R. W. Schwartz,et al.  Development of high performance stress-biased actuators through the incorporation of mechanical pre-loads , 2002 .

[10]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[11]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[12]  H. Park,et al.  Modeling and analysis for the development of Lightweight Piezoceramic Composite Actuators (LIPCA) , 2004 .

[13]  Naotake Mohri,et al.  Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  H. Park,et al.  Design and manufacture of a lightweight piezo-composite curved actuator , 2002 .

[15]  Hoon Cheol Park,et al.  Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA) , 2005 .

[16]  Gene H. Haertling,et al.  Rainbow Ceramics-A New Type of Ultra-High-Displacement Actuator , 1994 .

[17]  K. R. Koops,et al.  Observation of zero creep in piezoelectric actuators , 1999 .

[18]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[19]  Ralph C. Smith,et al.  Prestressed curved actuators: characterization and modeling of their piezoelectric behavior , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Hewon Jung,et al.  Creep characteristics of piezoelectric actuators , 2000 .