Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)x:(Sm2O3)1−x thin films

Unique epitaxial two-phase vertically aligned nanocomposite (VAN) (BiFeO3)x:(Sm2O3)1−x thin films were deposited on SrTiO3(001) substrates by pulsed laser deposition. The VAN thin films exhibit a highly ordered vertical columnar structure with high epitaxial quality. We demonstrate that the strains of the two phases in both out-of-plane and in-plane directions can be tuned by the deposition parameters during growth, e.g., deposition frequency and film composition of the nanocomposite. The strain tunability is found to be directly related to the systematic variation in the column widths in the nanocomposite. The dielectric property measurement shows that increasing vertical strain control will lead to a systematic dielectric loss reduction in the VAN thin films. This study suggests a promising avenue in achieving tunable strain in functional oxide thin films by using VAN structures.

[1]  S. Cheong,et al.  Electric field control of the magnetic state in BiFeO3 single crystals , 2008 .

[2]  Xiaodong He,et al.  Multiferroic properties of sputtered BiFeO3 thin films , 2008 .

[3]  Quanxi Jia,et al.  Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. , 2008, Nature materials.

[4]  Q. Jia,et al.  Structural and dielectric properties of epitaxial Sm2O3 thin films , 2008 .

[5]  R. Ramesh,et al.  Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. , 2007, Physical review letters.

[6]  L. Martin,et al.  Epitaxial Multiferroic BiFeO3 Thin Films: Progress and Future Directions , 2007 .

[7]  R. Katiyar,et al.  rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001) , 2007 .

[8]  Ramamoorthy Ramesh,et al.  Self‐Assembled Growth of BiFeO3–CoFe2O4 Nanostructures , 2006 .

[9]  K. Saito,et al.  Structural Characterization of BiFeO3 Thin Films by Reciprocal Space Mapping , 2006 .

[10]  C. Nan,et al.  Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films , 2006 .

[11]  H. Funakubo,et al.  Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films , 2006 .

[12]  Jenn–Ming Wu,et al.  Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current , 2005 .

[13]  C-H. Solterbeck,et al.  Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization , 2005 .

[14]  A. A. Dakhel Dielectric and optical properties of samarium oxide thin films , 2004 .

[15]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[16]  V. Tsurkan,et al.  Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films , 2003, Nature materials.

[17]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[18]  A. Trusova,et al.  Silicon MIS structures using samarium oxide films , 1998 .

[19]  T. Palstra RARE EARTH OXIDE THIN FILMS: GROWTH , CHARACTERIZATION , AND APPLICATIONS , 2007 .

[20]  M. Fanciulli,et al.  Rare Earth Oxide Thin Films , 2006 .

[21]  A. Zvezdin,et al.  Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeo3 in a strong magnetic field , 1994 .

[22]  I. Dubenko,et al.  Magnetoelectric (Bi, Ln)Feo3 compounds: Crystal growth, structure and properties , 1994 .