Trees and spatial topology change in CDT

Generalized causal dynamical triangulations (generalized CDT) is a model of two-dimensional quantum gravity in which a limited number of spatial topology changes is allowed to occur. We solve the model at the discretized level using bijections between quadrangulations and trees. In the continuum limit (scaling limit) the amplitudes are shown to agree with known formulas and explicit expressions are obtained for loop propagators and two-point functions. It is shown that from a combinatorial point of view generalized CDT can be viewed as the scaling limit of planar maps with a finite number of faces and we determine the distance function on this ensemble of planar maps. Finally, the relation with planar maps is used to illuminate a mysterious identity of certain continuum cylinder amplitudes.

[1]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[2]  Jérémie Bettinelli Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.

[3]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[4]  S. Zohren,et al.  An analytical analysis of CDT coupled to dimer-like matter , 2012, 1202.4322.

[5]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[6]  P. Di Francesco,et al.  Geodesic Distance in Planar Graphs: An Integrable Approach , 2005 .

[7]  Scaling functions for baby universes in two-dimensional quantum gravity , 1993, hep-th/9310098.

[8]  T. Jónsson,et al.  On the Spectral Dimension of Causal Triangulations , 2009, 0908.3643.

[9]  W. T. Tutte On the enumeration of planar maps , 1968 .

[10]  Scaling in quantum gravity , 1995, hep-th/9501049.

[11]  T. Mogami,et al.  Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time , 1993, hep-th/9302133.

[12]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[13]  Jerzy Jurkiewicz,et al.  Four-dimensional simplicial quantum gravity , 1992 .

[14]  J. Ambjorn,et al.  Putting a cap on causality violations in causal dynamical triangulations , 2007 .

[15]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[16]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[17]  J. L. Gall,et al.  Scaling limits of random trees and planar maps , 2011, 1101.4856.

[18]  Grégory Miermont,et al.  Scaling limits of random planar maps with large faces , 2011 .

[19]  V. Malyshev,et al.  Two-Dimensional Lorentzian Models , 2001 .

[20]  J. L. Gall,et al.  The Brownian cactus I. Scaling limits of discrete cactuses , 2011, 1102.4177.

[21]  On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.

[22]  S. Zohren,et al.  A matrix model for 2D quantum gravity defined by Causal dynamical triangulations , 2008, 0804.0252.

[23]  Nicolas Curien,et al.  Uniform infinite planar quadrangulations with a boundary , 2012, Random Struct. Algorithms.

[24]  J. Bouttier,et al.  The three-point function of planar quadrangulations , 2008, 0805.2355.

[25]  S. Zohren,et al.  On the quantum geometry of multi-critical CDT , 2012, 1203.5034.

[26]  J. Bouttier,et al.  Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop , 2009, 0906.4892.

[27]  Phase Transition for the Ising Model on the Critical Lorentzian Triangulation , 2008, 0810.2182.

[28]  A. Gorlich,et al.  New multicritical matrix models and multicritical 2d CDT , 2012, 1202.4435.

[29]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[30]  R. L. Renken,et al.  Simulations Of Four Dimensional Simplicial Quantum Gravity , 1994 .

[31]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[32]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[33]  J. Bouttier,et al.  Planar Maps and Continued Fractions , 2010, 1007.0419.

[34]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[35]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[36]  S. Zohren,et al.  A string field theory based on causal dynamical triangulations , 2008, 0802.0719.