Trees and spatial topology change in CDT
暂无分享,去创建一个
[1] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[2] Jérémie Bettinelli. Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.
[3] Jean-Franccois Le Gall,et al. Uniqueness and universality of the Brownian map , 2011, 1105.4842.
[4] S. Zohren,et al. An analytical analysis of CDT coupled to dimer-like matter , 2012, 1202.4322.
[5] Philippe Chassaing,et al. Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.
[6] P. Di Francesco,et al. Geodesic Distance in Planar Graphs: An Integrable Approach , 2005 .
[7] Scaling functions for baby universes in two-dimensional quantum gravity , 1993, hep-th/9310098.
[8] T. Jónsson,et al. On the Spectral Dimension of Causal Triangulations , 2009, 0908.3643.
[9] W. T. Tutte. On the enumeration of planar maps , 1968 .
[10] Scaling in quantum gravity , 1995, hep-th/9501049.
[11] T. Mogami,et al. Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time , 1993, hep-th/9302133.
[12] J. Jurkiewicz,et al. Nonperturbative quantum gravity , 2012, 1203.3591.
[13] Jerzy Jurkiewicz,et al. Four-dimensional simplicial quantum gravity , 1992 .
[14] J. Ambjorn,et al. Putting a cap on causality violations in causal dynamical triangulations , 2007 .
[15] P. Francesco,et al. Geodesic distance in planar graphs , 2003, cond-mat/0303272.
[16] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[17] J. L. Gall,et al. Scaling limits of random trees and planar maps , 2011, 1101.4856.
[18] Grégory Miermont,et al. Scaling limits of random planar maps with large faces , 2011 .
[19] V. Malyshev,et al. Two-Dimensional Lorentzian Models , 2001 .
[20] J. L. Gall,et al. The Brownian cactus I. Scaling limits of discrete cactuses , 2011, 1102.4177.
[21] On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.
[22] S. Zohren,et al. A matrix model for 2D quantum gravity defined by Causal dynamical triangulations , 2008, 0804.0252.
[23] Nicolas Curien,et al. Uniform infinite planar quadrangulations with a boundary , 2012, Random Struct. Algorithms.
[24] J. Bouttier,et al. The three-point function of planar quadrangulations , 2008, 0805.2355.
[25] S. Zohren,et al. On the quantum geometry of multi-critical CDT , 2012, 1203.5034.
[26] J. Bouttier,et al. Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop , 2009, 0906.4892.
[27] Phase Transition for the Ising Model on the Critical Lorentzian Triangulation , 2008, 0810.2182.
[28] A. Gorlich,et al. New multicritical matrix models and multicritical 2d CDT , 2012, 1202.4435.
[29] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[30] R. L. Renken,et al. Simulations Of Four Dimensional Simplicial Quantum Gravity , 1994 .
[31] R. Loll,et al. Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .
[32] Sigurdur Orn Stef'ansson,et al. Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.
[33] J. Bouttier,et al. Planar Maps and Continued Fractions , 2010, 1007.0419.
[34] Gr'egory Miermont,et al. Tessellations of random maps of arbitrary genus , 2007, 0712.3688.
[35] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[36] S. Zohren,et al. A string field theory based on causal dynamical triangulations , 2008, 0802.0719.