Evolutionary affinities of the order Perissodactyla and the phylogenetic status of the superordinal taxa Ungulata and Altungulata.

Contrary to morphological claims, molecular data indicate that the order Perissodactyla (e.g., horses, rhinoceroses, and tapirs) is neither part of the superordinal taxon Paenungulata (Sirenia, Proboscidea, and Hyracoidea) nor an immediate outgroup of the paenungulates. Rather, Perissodactyla is closer to Carnivora and Cetartiodactyla (Cetacea+Artiodactyla) than it is to the paenungulates. Therefore, two morphologically defined superordinal taxa, Altungulata (Proboscidea, Sirenia, Hyracoidea, and Perissodactyla) and Ungulata (Altungulata and Cetartiodactyla), are invalidated. Perissodactyla, Carnivora, and Cetartiodactyla are shown to constitute a rather tight trichotomy. However, a molecular analysis of 36 protein sequences with a total concatenated length of 7885 aligned amino acids indicates that Perissodactyla is closer to Cetartiodactyla than either taxa is to Carnivora. The relationships among Paenungulata, Primates, and the clade consisting of Perissodactyla, Carnivora, and Cetartiodactylaa could not be resolved on the basis of the available data.

[1]  M. Fischer,et al.  The Interrelation Between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia: The Morphological Evidence , 1993 .

[2]  M. Novacek Mammalian phylogeny: shaking the tree. , 1992, Nature.

[3]  D. Prothero,et al.  The Evolution of perissodactyls , 1989 .

[4]  D. Higgins,et al.  Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. , 1994, Molecular biology and evolution.

[5]  J. Leunissen,et al.  Eye Lens Crystallins and the Phylogeny of Placental Orders: Evidence for a Macroscelid-Paenungulate Clade , 1993 .

[6]  M. Milinkovitch Molecular phylogeny of cetaceans prompts revision of morphological transformations. , 1995, Trends in ecology & evolution.

[7]  Laurent Duret,et al.  Phylogenetic position of the order Lagomorpha (rabbits, hares and allies) , 1996, Nature.

[8]  J. Shoshani Hyracoidea-Tethytheria Affinity Based on Myological Data , 1993 .

[9]  U. Zölzer,et al.  Amino acid sequences of P1 protamines and the phylogeny of eutherian mammals: a cladistic study. , 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  D M Irwin,et al.  Evolution of the cytochrome b gene of mammals. , 1991, Journal of molecular evolution.

[11]  D. Prothero Ungulate Phylogeny: Molecular vs. Morphological Evidence , 1993 .

[12]  M. Goodman,et al.  Molecular evidence on primate phylogeny from DNA sequences. , 1994, American journal of physical anthropology.

[13]  Hans-Werner Mewes,et al.  The PIR-International Protein Sequence Database , 1992, Nucleic Acids Res..

[14]  M. Goodman,et al.  A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. , 1992, Molecular phylogenetics and evolution.

[15]  Dan Graur,et al.  Is the guinea-pig a rodent? , 1991, Nature.

[16]  Michael J. Benton,et al.  The phylogeny and classification of tetrapods , 1986 .

[17]  E. Douzery,et al.  Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. , 1997, Molecular biology and evolution.

[18]  J. Adachi,et al.  MOLPHY, programs for molecular phylogenetics , 1992 .

[19]  M. Gouy,et al.  HOVERGEN: a database of homologous vertebrate genes. , 1994, Nucleic acids research.

[20]  M. Mckenna Toward a Phylogenetic Classification of the Mammalia , 1975 .

[21]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[22]  C. Gissi,et al.  The guinea-pig is not a rodent , 1996, Nature.

[23]  Winston A Hide,et al.  The biochemical phylogeny of guinea-pigs and gundis, and the paraphyly of the order rodentia. , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.

[24]  M. Goodman,et al.  Rejection of the "flying primate" hypothesis by phylogenetic evidence from the epsilon-globin gene. , 1992, Science.

[25]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[26]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[27]  M. Goodman,et al.  Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. , 1996, Molecular phylogenetics and evolution.

[28]  W. C. Barker,et al.  The PIR-International Protein Sequence Database. , 1998, Nucleic acids research.