PORTFOLIO OPTIMIZATION UNDER NONLINEAR UTILITY

This paper studies the utility maximization problem of an agent with nontrivial endowment, and whose preferences are modeled by the maximal subsolution of a backward stochastic differential equation (BSDE). We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled forward–BSDE (FBSDE). Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.

[1]  Emanuela Rosazza Gianin,et al.  Dual Representation of Minimal Supersolutions of Convex BSDEs , 2013, 1308.1275.

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  Julio D. Backhoff Veraguas,et al.  Robust Utility Maximization without Model Compactness , 2016, SIAM J. Financial Math..

[4]  Gregor Heyne,et al.  Minimal Supersolutions of BSDEs with Lower Semicontinuous Generators , 2011 .

[5]  P. Imkeller,et al.  Forward-backward systems for expected utility maximization , 2011, 1110.2713.

[6]  C. Doléans-Dade,et al.  Inegalites de normes avec poids , 1979 .

[7]  J. Schreiber Foundations Of Statistics , 2016 .

[8]  Samuel Drapeau,et al.  Minimal Supersolutions of Convex BSDEs , 2011 .

[9]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[10]  P. Protter Stochastic integration and differential equations , 1990 .

[11]  N. Kazamaki Continuous Exponential Martingales and Bmo , 1994 .

[12]  D. Bernoulli Specimen theoriae novae de mensura sortis : translated into German and English , 1967 .

[13]  Hui Wang,et al.  Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.

[14]  S. Peng,et al.  Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control , 1999 .

[15]  N. El Karoui,et al.  CASH SUBADDITIVE RISK MEASURES AND INTEREST RATE AMBIGUITY , 2007, 0710.4106.

[16]  F. Delbaen,et al.  A compactness principle for bounded sequences of martingales with applications , 1999 .

[17]  A COMPACTNESS PRINCIPLE FOR BOUNDEDSEQUENCES OF MARTINGALES WITH APPLICATIONSF , 1996 .

[18]  Michael Kupper,et al.  Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..

[19]  M. Schweizer,et al.  A Stochastic Control Approach to a Robust Utility Maximization Problem , 2007 .

[20]  A stochastic control approach to robust duality in utility maximization , 2013 .

[21]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[22]  R. Rockafellar Extension of Fenchel’ duality theorem for convex functions , 1966 .

[23]  Freddy Delbaen,et al.  Backward SDEs with superquadratic growth , 2009 .

[24]  W. Marsden I and J , 2012 .

[25]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[26]  R. Darling,et al.  BACKWARDS SDE WITH RANDOM TERMINAL TIME AND APPLICATIONS TO SEMILINEAR ELLIPTIC PDE , 1997 .

[27]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[28]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[29]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[30]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[31]  S. Peng,et al.  A dynamic maximum principle for the optimization of recursive utilities under constraints , 2001 .

[32]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .