PORTFOLIO OPTIMIZATION UNDER NONLINEAR UTILITY
暂无分享,去创建一个
[1] Emanuela Rosazza Gianin,et al. Dual Representation of Minimal Supersolutions of Convex BSDEs , 2013, 1308.1275.
[2] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[3] Julio D. Backhoff Veraguas,et al. Robust Utility Maximization without Model Compactness , 2016, SIAM J. Financial Math..
[4] Gregor Heyne,et al. Minimal Supersolutions of BSDEs with Lower Semicontinuous Generators , 2011 .
[5] P. Imkeller,et al. Forward-backward systems for expected utility maximization , 2011, 1110.2713.
[6] C. Doléans-Dade,et al. Inegalites de normes avec poids , 1979 .
[7] J. Schreiber. Foundations Of Statistics , 2016 .
[8] Samuel Drapeau,et al. Minimal Supersolutions of Convex BSDEs , 2011 .
[9] R. Rockafellar. Convex Analysis: (pms-28) , 1970 .
[10] P. Protter. Stochastic integration and differential equations , 1990 .
[11] N. Kazamaki. Continuous Exponential Martingales and Bmo , 1994 .
[12] D. Bernoulli. Specimen theoriae novae de mensura sortis : translated into German and English , 1967 .
[13] Hui Wang,et al. Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.
[14] S. Peng,et al. Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control , 1999 .
[15] N. El Karoui,et al. CASH SUBADDITIVE RISK MEASURES AND INTEREST RATE AMBIGUITY , 2007, 0710.4106.
[16] F. Delbaen,et al. A compactness principle for bounded sequences of martingales with applications , 1999 .
[17] A COMPACTNESS PRINCIPLE FOR BOUNDEDSEQUENCES OF MARTINGALES WITH APPLICATIONSF , 1996 .
[18] Michael Kupper,et al. Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..
[19] M. Schweizer,et al. A Stochastic Control Approach to a Robust Utility Maximization Problem , 2007 .
[20] A stochastic control approach to robust duality in utility maximization , 2013 .
[21] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[22] R. Rockafellar. Extension of Fenchel’ duality theorem for convex functions , 1966 .
[23] Freddy Delbaen,et al. Backward SDEs with superquadratic growth , 2009 .
[24] W. Marsden. I and J , 2012 .
[25] P. Imkeller,et al. Utility maximization in incomplete markets , 2005, math/0508448.
[26] R. Darling,et al. BACKWARDS SDE WITH RANDOM TERMINAL TIME AND APPLICATIONS TO SEMILINEAR ELLIPTIC PDE , 1997 .
[27] F. Delbaen,et al. Exponential Hedging and Entropic Penalties , 2002 .
[28] Larry G. Epstein,et al. Stochastic differential utility , 1992 .
[29] W. Schachermayer,et al. The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .
[30] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[31] S. Peng,et al. A dynamic maximum principle for the optimization of recursive utilities under constraints , 2001 .
[32] F. Delbaen,et al. A general version of the fundamental theorem of asset pricing , 1994 .