AN ADAPTIVE, HIGHER-ORDER GODUNOV METHOD FOR GAS DYNAMICS IN THREE-DIMENSIONAL ORTHOGONAL CURVILINEAR COORDINATES

We describe an adaptive higher-order Godunov method for the compressible Euler equations with an arbitrary convex equation of state in a three-dimensional system of orthogonal curvilin-ear coordinates. The single grid algorithm is a fractional-step method which uses a second-order Godunov method for gas dynamics in each fractional step. The single grid algorithm is coupled to a conservative local adaptive mesh reenement algorithm that selectively reenes regions of the computational grid to achieve a desired level of accuracy. Spherical and cylindrical coordinates are used to illustrate. Numerical results from a problem in spherical coordinates are shown.

[1]  Charles A. Rendleman,et al.  Numerical simulation of a wave-guide mixing layer on a Cray C-90 , 1995 .

[2]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[3]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[4]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[5]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[6]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[7]  M. Crandall,et al.  The method of fractional steps for conservation laws , 1980 .

[8]  E. Puckett,et al.  A High-Order Godunov Method for Multiple Condensed Phases , 1996 .

[9]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[10]  R. I. Klein,et al.  Three dimensional hydrodynamic calculations with adaptive mesh refinement of the evolution of Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry: Multi-mode perturbations , 1993 .

[11]  Elbridge Gerry Puckett,et al.  Edge effects in molybdenum‐encapsulated molten silicate shock wave targets , 1994 .

[12]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[13]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods , 1993, SIAM J. Sci. Comput..

[14]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[15]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[16]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[17]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[18]  Phillip Colella,et al.  Higher order Godunov methods for general systems of hyperbolic conservation laws , 1989 .

[19]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .