Exploring computed tomography in ichnological analysis of cores from modern marine sediments

[1]  S. Donovan Trace fossils , 2020 .

[2]  J. Dorador,et al.  Application of digital image treatment to the characterization and differentiation of deep-sea ichnofacies , 2020 .

[3]  D. Knaust,et al.  Burrowed matrix powering dual porosity systems – A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea , 2020 .

[4]  J. Dorador,et al.  Trace fossils evidence of a complex history of nutrient availability and oxygen conditions during Heinrich Event 1 , 2019, Global and Planetary Change.

[5]  J. Dorador,et al.  Lateral variability of ichnofabrics in marine cores: Improving sedimentary basin analysis using Computed Tomography images and high-resolution digital treatment , 2018 .

[6]  J. Dorador,et al.  High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects , 2018 .

[7]  J. A. Maceachern,et al.  An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: Insights from the Lower Cretaceous Viking Formation, Alberta, Canada , 2017 .

[8]  J. A. Maceachern,et al.  PREFERENTIAL ORIENTATION OF SHRIMP-GENERATED DIPLOCRATERION PARALLELUM AND THEIR RELIABILITY AS PALEOCURRENT INDICATORS , 2017, Palaios.

[9]  S. Sen,et al.  Impact of bioturbation on reservoir quality and production – A review , 2017, Journal of the Geological Society of India.

[10]  J. Einsle,et al.  Anatomy of Heinrich Layer 1 and its role in the last deglaciation , 2017 .

[11]  A. Freiwald,et al.  Mediterranean cold‐water corals – an important regional carbonate factory? , 2016 .

[12]  S. Flögel,et al.  Aggradation and carbonate accumulation of Holocene Norwegian cold‐water coral reefs , 2015 .

[13]  Li‐Jun Zhang,et al.  Zoophycos macroevolution since 541 Ma , 2015, Scientific Reports.

[14]  J. Dorador,et al.  Response of macrobenthic and foraminifer communities to changes in deep-sea environmental conditions from Marine Isotope Stage (MIS) 12 to 11 at the “Shackleton Site” , 2015 .

[15]  P. Grunert,et al.  Deep-sea trace fossil and benthic foraminiferal assemblages across glacial Terminations 1, 2 and 4 at the “Shackleton Site” (IODP Expedition 339, Site U1385) , 2015 .

[16]  A. Briguglio,et al.  Fossilized bioelectric wire – the trace fossil Trichichnus , 2014, Biogeosciences.

[17]  J. Dorador,et al.  A NOVEL APPLICATION OF DIGITAL IMAGE TREATMENT BY QUANTITATIVE PIXEL ANALYSIS TO TRACE FOSSIL RESEARCH IN MARINE CORES , 2014 .

[18]  J. Dorador,et al.  Ichnological analysis of Pleistocene sediments from the IODP Site U1385 “Shackleton Site” on the Iberian margin: Approaching paleoenvironmental conditions , 2014 .

[19]  Roger D. Flood,et al.  Quantitative estimation of bioturbation based on digital image analysis , 2014 .

[20]  S. Pemberton,et al.  Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada , 2013 .

[21]  J. A. Maceachern,et al.  Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada , 2013 .

[22]  Mark A. Wilson,et al.  Ichnology: Organism-Substrate Interactions in Space and Time , 2011 .

[23]  D. McIlroy,et al.  Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne d'Arc Basin, offshore Newfoundland, Canada , 2010 .

[24]  D. Knaust Meiobenthic trace fossils comprising a miniature ichnofabric from Late Permian carbonates of the Oman Mountains , 2010 .

[25]  D. Knaust Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian – Triassic Khuff Formation in the Middle East , 2009, GeoArabia.

[26]  H. Naruse,et al.  Three-dimensional Morphology of the Ichnofossil Phycosiphon incertum and Its Implication for Paleoslope Inclination , 2008 .

[27]  R. Bromley,et al.  Names for trace fossils: a uniform approach , 2006 .

[28]  L. Löwemark,et al.  Trace fossils as a paleoceanographic tool: evidence from Late Quaternary sediments of the southwestern Iberian margin , 2004 .

[29]  L. Löwemark Automatic image analysis of X-ray radiographs: a new method for ichnofabric evaluation , 2003 .

[30]  B. Balcom,et al.  Using Magnetic Resonance Imaging and Petrographic Techniques to Understand the Textural Attributes and Porosity Distribution in Macaronichnus-Burrowed Sandstone , 2002 .

[31]  C. Mendoza,et al.  Assessing the anisotropic permeability of Glossifungites surfaces , 1999, Petroleum Geoscience.

[32]  A. Ekdale,et al.  Trace fossils: Biology, taphonomy and applications , 1997 .

[33]  D. Harper The palaeobiology of trace fossils edited by Stephen K. Donovan. Wiley, Chichester, 1994. No. of pages: 308. Price: £39.95 ($63.95) (hardback) ISBN 0471 948438 , 1995 .

[34]  J. Brossmann,et al.  Computed tomography: application in studying biogenic structures in sediment cores , 1994 .

[35]  R. Goldring,et al.  Description and analysis of bioturbation and ichnofabric , 1993, Journal of the Geological Society.

[36]  M. Picard,et al.  Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), northern Apennines, Italy , 1991 .

[37]  A. Wetzel Ecologic interpretation of deep-sea trace fossil communities , 1991 .

[38]  A. Wetzel Biogenic structures in modern slope to deep-sea sediments in the sulu sea basin (Philippines) , 1983 .

[39]  H. Reineck Sedimentgefüge im Bereich der südlichen Nordsee , 1963 .

[40]  D. Knaust Atlas of Trace Fossils in Well Core: Appearance, Taxonomy and Interpretation , 2017 .

[41]  S. Pemberton,et al.  Petrophysical Characterization of Bioturbated Sandstone Reservoir Facies In the Upper Jurassic Ula Formation, Norwegian North Sea, Europe , 2015 .

[42]  J. Dorador,et al.  Ichnofabric characterization in cores : a method of digital image treatment , 2015 .

[43]  F. Rodríguez-Tovar Trace Fossils as Indicators of Sedimentary Environments , 2013 .

[44]  F. Rodríguez-Tovar,et al.  Variations in population structure of Diplocraterion parallelum: Hydrodynamic influence, food availability, or nursery settlement? , 2013 .

[45]  J. Dorador,et al.  Digital image treatment applied to ichnological analysis of marine core sediments , 2013, Facies.

[46]  A. Rindsberg Ichnotaxonomy: Finding Patterns in a Welter of Information , 2012 .

[47]  A. Uchman,et al.  ICHNOLOGICAL ANALYSIS OF LATERAL ENVIRONMENTAL HETEROGENEITY WITHIN THE BONARELLI LEVEL (UPPERMOST CENOMANIAN) IN THE CLASSICAL LOCALITIES NEAR GUBBIO, CENTRAL APENNINES, ITALY , 2012 .

[48]  R. Bromley,et al.  Trace fossils as indicators of sedimentary environments , 2012 .

[49]  Uniform approach. , 2010, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[50]  D. McIlroy,et al.  Abstract: Does bioturbation enhance reservoir quality? A case study from the Cretaceous Ben Nevis Formation, Jeanne d’ Arc Basin, offshore Newfoundland, Canada , 2010 .

[51]  R. Bromley,et al.  Ichnofabrics in clastic sediments : applications to sedimentological core studies : a practical guide , 2008 .

[52]  L. Löwemark Importance and Usefulness of Trace Fossils and Bioturbation in Paleoceanography , 2007 .

[53]  M. Sukop,et al.  Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones , 2006 .

[54]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[55]  R. Bromley Trace Fossils: Biology, Taxonomy and Applications , 1996 .

[56]  S. Pemberton Biogenic sedimentary structures , 1978 .

[57]  D. Rhoads The Paleoecological and Environmental Significance Of Trace Fossils , 1975 .