Oncogenic RAS promotes leukemic transformation of CUX1-deficient cells

[1]  Megan E. McNerney,et al.  The significance of CUX1 and chromosome 7 in myeloid malignancies , 2021, Current opinion in hematology.

[2]  Megan E. McNerney,et al.  Loss of a 7q gene, CUX1, disrupts epigenetic-driven DNA repair and drives therapy-related myeloid neoplasms. , 2021, Blood.

[3]  Shondra M. Pruett-Miller,et al.  Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells , 2021, Leukemia.

[4]  Jessica K. Gagnon,et al.  ERK signalling: a master regulator of cell behaviour, life and fate , 2020, Nature Reviews Molecular Cell Biology.

[5]  S. Miyano,et al.  Landscape and function of multiple mutations within individual oncogenes , 2020, Nature.

[6]  J. Maciejewski,et al.  Distinct clinical and biological implications of CUX1 in myeloid neoplasms. , 2019, Blood advances.

[7]  T. Ideker,et al.  Identifying Epistasis in Cancer Genomes: A Delicate Affair , 2019, Cell.

[8]  C. Niemeyer JMML genomics and decisions. , 2018, Hematology. American Society of Hematology. Education Program.

[9]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[10]  M. Loh,et al.  Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. , 2018, JCI insight.

[11]  M. McNerney,et al.  Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS. , 2018, Blood.

[12]  M. Figueroa,et al.  Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells. , 2018, Blood advances.

[13]  Yakir A Reshef,et al.  Insights about clonal hematopoiesis from 8,342 mosaic chromosomal alterations , 2018, Nature.

[14]  Francine E. Garrett-Bakelman,et al.  Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. , 2018, Cancer cell.

[15]  R. Andrews,et al.  Molecular synergy underlies the co-occurrence patterns and phenotype of NPM 1-mutant 1 acute myeloid leukemia . 2 3 , 2017 .

[16]  Kari Stefansson,et al.  Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. , 2017, Blood.

[17]  P. A. Futreal,et al.  Copy number alterations detected as clonal hematopoiesis of indeterminate potential. , 2017, Blood advances.

[18]  Moriah H Nissan,et al.  OncoKB: A Precision Oncology Knowledge Base. , 2017, JCO precision oncology.

[19]  Megan E. McNerney,et al.  The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters , 2017, Nucleic acids research.

[20]  B. Taylor,et al.  KRAS Allelic Imbalance Enhances Fitness and Modulates MAP Kinase Dependence in Cancer , 2017, Cell.

[21]  D. Neuberg,et al.  Prognostic Mutations in Myelodysplastic Syndrome after Stem‐Cell Transplantation , 2017, The New England journal of medicine.

[22]  A. LaCasce,et al.  Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  P. Woll,et al.  Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality , 2016, Oncotarget.

[24]  Shaoguang Li,et al.  Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy. , 2016, Blood.

[25]  L. Friedman,et al.  Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras , 2016, Leukemia.

[26]  Jinyong Wang,et al.  Oncogenic NRAS hyper-activates multiple pathways in human cord blood stem/progenitor cells and promotes myelomonocytic proliferation in vivo. , 2015, American journal of translational research.

[27]  T. Golub,et al.  The Genomic Landscape of Juvenile Myelomonocytic Leukemia , 2015, Nature Genetics.

[28]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[29]  S. Lowe,et al.  Preclinical efficacy of MEK inhibition in Nras-mutant AML. , 2014, Blood.

[30]  M. Loh,et al.  Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. , 2014, Blood.

[31]  A. Nepveu,et al.  CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers , 2014, Nature Reviews Cancer.

[32]  Christopher D. Brown,et al.  The spectrum of somatic mutations in high‐risk acute myeloid leukaemia with ‐7/del(7q) , 2014, British journal of haematology.

[33]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[34]  P. Campbell,et al.  Inactivating CUX1 mutations promote tumorigenesis , 2013, Nature Genetics.

[35]  Jeffrey A. Magee,et al.  Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness , 2013, Nature.

[36]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[37]  Z. Estrov,et al.  Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML , 2013, Leukemia.

[38]  T. Suda,et al.  Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. , 2013, Cancer cell.

[39]  E. Ranheim,et al.  Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions. , 2013, Blood.

[40]  James Downing,et al.  Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation. , 2013, Cancer discovery.

[41]  Christopher D. Brown,et al.  CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. , 2013, Blood.

[42]  Ingo Ruczinski,et al.  Detectable clonal mosaicism from birth to old age and its relationship to cancer , 2012, Nature Genetics.

[43]  E. Ranheim,et al.  Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. , 2011, Blood.

[44]  T. Jacks,et al.  Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. , 2011, Blood.

[45]  B. Cubelos,et al.  Cux1 and Cux2 Regulate Dendritic Branching, Spine Morphology, and Synapses of the Upper Layer Neurons of the Cortex , 2010, Neuron.

[46]  R. Maser,et al.  Acceleration of polycystic kidney disease progression in cpk mice carrying a deletion in the homeodomain protein Cux1. , 2008, American journal of physiology. Renal physiology.

[47]  A. Sweet-Cordero,et al.  Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon , 2008, Nature Genetics.

[48]  Laurent Sansregret,et al.  The multiple roles of CUX1: insights from mouse models and cell-based assays. , 2008, Gene.

[49]  T. Haferlach,et al.  Implications of NRAS mutations in AML: a study of 2502 patients. , 2006, Blood.

[50]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Shaw,et al.  Molecular Signatures of Proliferation and Quiescence in Hematopoietic Stem Cells , 2004, PLoS biology.

[52]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[53]  R. Larson,et al.  RAS, FLT3, and TP53 mutations in therapy‐related myeloid malignancies with abnormalities of chromosomes 5 and 7 , 2004, Genes, chromosomes & cancer.

[54]  D. Gilliland,et al.  Genetics of myeloid leukemias. , 2003, Annual review of genomics and human genetics.

[55]  J. Downing,et al.  Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. , 2002, Blood.

[56]  R. Kosher,et al.  Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. , 2002, Developmental biology.

[57]  R. Scheuermann,et al.  Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. , 2001, Blood.

[58]  B. Lange,et al.  Myelodysplastic and Myeloproliferative Disorders of Childhood : A Study of 167 Patients , 1998 .

[59]  R. Choy,et al.  Functional Analysis ofDrosophilaand Mammalian Cut Proteins in Flies , 1996 .

[60]  R. Choy,et al.  Functional analysis of Drosophila and mammalian cut proteins in files. , 1996, Developmental biology.

[61]  K. Shannon,et al.  Childhood monosomy 7: epidemiology, biology, and mechanistic implications. , 1995, Blood.

[62]  P. O'Connell,et al.  Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. , 1992, Blood.

[63]  P. Emanuel,et al.  Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. , 1991, Blood.

[64]  O. Haas,et al.  Colony growth characteristics in chronic myelomonocytic leukemia. , 1988, Leukemia research.