Improved DCT-based image coding and decoding methods for low-bit-rate applications

The discrete cosine transform (DCT) is well known for highly efficient coding performance, and it is widely used in many image compression applications. However, in low-bit rate coding, it produces undesirable block artifacts that are visually not pleasing. In addition, in many applications, faster compression and easier VLSI implementation of DCT coefficients are also important issues. The removal of the block artifacts and faster DCT computation are therefore of practical interest. In this paper, we outline a modified DCT computation scheme that provides a simple efficient solution to the reduction of the block artifacts while achieving faster computation. We also derive a similar solution for the efficient computation of the inverse DCT. We have applied the new approach for the low-bit rate coding and decoding of images. Initial simulation results on real images have verified the improved performance obtained using the proposed method over the standard JPEG method.