Heterogeneous mantle beneath the Neo-Tethys Ocean revealed by ultramafic rocks from the Xiugugabu Ophiolite in the Yarlung-Tsangpo Suture Zone, southwestern Tibet

[1]  W. Griffin,et al.  Vertical depletion of ophiolitic mantle reflects melt focusing and interaction in sub-spreading-center asthenosphere , 2022, Nature Communications.

[2]  R. Arculus,et al.  Spinel Harzburgite-Derived Silicate Melts Forming Sulfide-Bearing Orthopyroxenite in the Lithosphere. Part 1: Partition Coefficients and Volatile Evolution Accompanying Fluid- and Redox-Induced Sulfide Formation , 2022, Frontiers in Earth Science.

[3]  Yan Liang,et al.  Decoupled Trace Element and Isotope Compositions Recorded in Orthopyroxene and Clinopyroxene in Composite Pyroxenite Veins from the Xiugugabu Ophiolite (SW Tibet) , 2022, Journal of Petrology.

[4]  Xiang Zhou,et al.  Xigaze ophiolite (South Tibet) records complex melt-fluid-peridotite interaction in the crust-mantle transition zone beneath oceanic slow-ultraslow spreading centers , 2022, Lithos.

[5]  Chuan-Zhou Liu,et al.  An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites , 2021, Fundamental Research.

[6]  A. Sanfilippo,et al.  Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge , 2021, Earth and Planetary Science Letters.

[7]  B. Su,et al.  Supplemental Material: Subduction initiation-induced rapid emplacement of garnet-bearing peridotites at a nascent forearc: Petrological and Os-Li isotopic evidence from the Purang ophiolite, Tibet , 2021, GSA Bulletin.

[8]  H. Dick,et al.  Tectonic Controls on Block Rotation and Sheeted Sill Emplacement in the Xigaze Ophiolite (Tibet): The Construction Mode of Slow‐Spreading and Ultraslow‐Spreading Oceanic Crusts , 2021, Geochemistry, Geophysics, Geosystems.

[9]  Tong Liu,et al.  Heterogeneous sub-ridge mantle of the Neo-Tethys: Constraints from Re-Os isotope and HSE compositions of the Xigaze ophiolites , 2020 .

[10]  H. Dick,et al.  The Xigaze ophiolite: fossil ultraslow-spreading ocean lithosphere in the Tibetan Plateau , 2020, Journal of the Geological Society.

[11]  Meijuan Zhao,et al.  Geochemical evidence for forearc metasomatism of peridotite in the Xigaze ophiolite during subduction initiation in Neo-Tethyan Ocean, south to Tibet , 2020 .

[12]  Wei Lin,et al.  Melt extraction and reaction in the forearc mantle: Constraints from trace elements and isotope geochemistry of ultra-refractory peridotites of the New Caledonia Peridotite Nappe , 2020 .

[13]  Tong Liu,et al.  Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints , 2020, Lithos.

[14]  D. Pearson,et al.  The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet , 2020 .

[15]  W. Griffin,et al.  Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective , 2020 .

[16]  B. Su,et al.  “Garnet” Lherzolites in the Purang Ophiolite, Tibet: Evidence for Exhumation of Deep Oceanic Lithospheric Mantle , 2020, Geophysical Research Letters.

[17]  Nina Liu,et al.  Origin of Mesozoic ophiolitic mélanges in the western Yarlung Zangbo suture zone, SW Tibet , 2019 .

[18]  C. Tao,et al.  Osmium isotope compositions and highly siderophile element abundances in abyssal peridotites from the Southwest Indian Ridge: Implications for evolution of the oceanic upper mantle , 2019, Lithos.

[19]  Tong Liu,et al.  Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone , 2019, Earth and Planetary Science Letters.

[20]  Chuan-Zhou Liu,et al.  Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle , 2019, Minerals.

[21]  A. Sanfilippo,et al.  Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism , 2019, Earth and Planetary Science Letters.

[22]  Fu-Yuan Wu,et al.  Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet , 2019, Contributions to Mineralogy and Petrology.

[23]  Fu-Yuan Wu,et al.  Limited Recycling of Crustal Osmium in Forearc Mantle During Slab Dehydration , 2018, Acta Geologica Sinica - English Edition.

[24]  Y. Dilek,et al.  Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo suture zone (southern Tibet) , 2018 .

[25]  Tong Liu,et al.  Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): Petrology and tectonic setting , 2017 .

[26]  B. Wood,et al.  The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts , 2017 .

[27]  Y. Dilek,et al.  Petrological and Re-Os isotopic constraints on the origin and tectonic setting of the Cuobuzha peridotite, Yarlung Zangbo suture zone, southwest Tibet, China , 2017 .

[28]  Y. Dilek,et al.  Petrological and Re-Os Isotopic Constraints on the Origin and Tectonic Setting of the Cuobuzha Peridotite, Yarlung Zangbo Suture Zone, SW Tibet, China , 2017 .

[29]  W. Griffin,et al.  Two‐layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs , 2017 .

[30]  R. Walker,et al.  186 Os– 187 Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys , 2017 .

[31]  L. Ding,et al.  Processes of initial collision and suturing between India and Asia , 2017, Science China Earth Sciences.

[32]  W. Griffin,et al.  Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet) , 2016 .

[33]  E. Garzanti,et al.  The timing of India-Asia collision onset – Facts, theories, controversies , 2016 .

[34]  J. Warren Global variations in abyssal peridotite compositions , 2016 .

[35]  Peter A. Williams,et al.  Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and its Tectonic Implications , 2016 .

[36]  S. Guo,et al.  Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites , 2016 .

[37]  W. Griffin,et al.  Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites , 2016 .

[38]  R. Walker,et al.  Use of Hydrofluoric Acid Desilicification in the Determination of Highly Siderophile Element Abundances and Re‐Pt‐Os Isotope Systematics in Mafic‐Ultramafic Rocks , 2016 .

[39]  T. Morishita,et al.  Rhenium-osmium isotope fractionation at the oceanic crust-mantle boundary , 2016 .

[40]  Y. Dilek,et al.  Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet , 2015 .

[41]  Yan Liang,et al.  Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites , 2015 .

[42]  K. Hodges,et al.  Forearc hyperextension dismembered the south Tibetan ophiolites , 2015 .

[43]  Yongjun Lu,et al.  A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones , 2015 .

[44]  A. McCarthy,et al.  Ancient depletion and mantle heterogeneity: Revisiting the Permian-Jurassic paradox of Alpine peridotites , 2015 .

[45]  J. Snow,et al.  Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle , 2014 .

[46]  D. Ionov,et al.  Melt– and Fluid–Rock Interaction in Supra-Subduction Lithospheric Mantle: Evidence from Andesite-hosted Veined Peridotite Xenoliths , 2013 .

[47]  Chengshan Wang,et al.  Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet , 2013 .

[48]  P. Kelemen,et al.  Along‐Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust , 2013 .

[49]  J. Warren,et al.  Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides , 2012 .

[50]  B. Romanowicz,et al.  Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity , 2012 .

[51]  A. Stracke Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle , 2012 .

[52]  M. Thirlwall,et al.  Garnet clinopyroxenite layers from the mantle sequences of the Northern Apennine ophiolites (Italy): Evidence for recycling of crustal material , 2012 .

[53]  Chengshan Wang,et al.  The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys , 2012 .

[54]  Chengshan Wang,et al.  Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing , 2012 .

[55]  Fu-Yuan Wu,et al.  Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification , 2012 .

[56]  D. Ionov,et al.  A new petrogenetic model for low‐Ca boninites: Evidence from veined sub‐arc xenoliths on melt‐mantle interaction and melt fractionation , 2012 .

[57]  S. Meffre,et al.  The metamorphic sole of New Caledonia ophiolite: 40Ar/39Ar, U‐Pb, and geochemical evidence for subduction inception at a spreading ridge , 2012 .

[58]  Chenguang Sun,et al.  A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks , 2012 .

[59]  Chengshan Wang,et al.  Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys , 2011 .

[60]  D. Günther,et al.  Abyssal peridotite Hf isotopes identify extreme mantle depletion , 2011 .

[61]  Chengshan Wang,et al.  Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet , 2011 .

[62]  E. Nakamura,et al.  An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions , 2009 .

[63]  Yue-heng Yang,et al.  Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton , 2009 .

[64]  A. Hofmann,et al.  Non-chondritic HSE budget in Earth's upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean) , 2009 .

[65]  B. Burchfiel,et al.  The Geological Evolution of the Tibetan Plateau , 2008, Science.

[66]  B. Xia,et al.  Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet , 2008 .

[67]  Albrecht W. Hofmann,et al.  Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean , 2008, Nature.

[68]  P. Szatmari,et al.  Geophysical and geochemical evidence for cold upper mantle beneath the Equatorial Atlantic Ocean , 2008 .

[69]  O. Alard,et al.  The scale and origin of the osmium isotope variations in mid-ocean ridge basalts , 2007 .

[70]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[71]  N. Rogers,et al.  Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge , 2006 .

[72]  M. Storey,et al.  New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge , 2005 .

[73]  W. Griffin,et al.  In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle , 2005, Nature.

[74]  C. Herzberg Geodynamic Information in Peridotite Petrology , 2004 .

[75]  B. Dupré,et al.  Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts , 2004, Nature.

[76]  T. Meisel,et al.  Reference materials for geochemical PGE analysis : new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials , 2004 .

[77]  E. Bonatti,et al.  Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge , 2004 .

[78]  T. Barry,et al.  A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics? , 2004 .

[79]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[80]  J. Lorand,et al.  Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean) , 2003 .

[81]  P. Hoppe,et al.  Garnet-field melting and late-stage refertilization in "Residual" abyssal peridotites from the Central Indian Ridge , 2002 .

[82]  H. Dick,et al.  Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites , 2002, Nature.

[83]  Peter E. van Keken,et al.  MANTLE MIXING: The Generation, Preservation, and Destruction of Chemical Heterogeneity , 2002 .

[84]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[85]  J. Blusztajn,et al.  Abyssal peridotite osmium isotopic compositions from cr‐spinel , 2002 .

[86]  W. Wegscheider,et al.  Recognizing heterogeneous distribution of platinum group elements (PGE) in geological materials by means of the Re–Os isotope system , 2001, Analytical and Bioanalytical Chemistry.

[87]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[88]  A. Hofmann,et al.  Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites , 2001, Nature.

[89]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[90]  J. Morgan,et al.  190Pt–186Os and 187Re–187Os systematics of abyssal peridotites , 2000 .

[91]  H. Becker Re–Os fractionation in eclogites and blueschists and the implications for recycling of oceanic crust into the mantle , 2000 .

[92]  E. Bonatti,et al.  Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs , 2000 .

[93]  Hai. B. O. Zou Modeling of trace element fractionation during non-modal dynamic melting with linear variations in mineral/melt distribution coefficients , 2000 .

[94]  J. Fitton,et al.  Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: petrogenetic signature of melt percolation? , 1999 .

[95]  Allègre,et al.  Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater , 1998, Science.

[96]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[97]  C. Langmuir,et al.  The origin of abyssal peridotites: a new perspective , 1997 .

[98]  R. Vannucci,et al.  Chemistry and origin of trapped melts in ophioiitic peridotites , 1997 .

[99]  J. Birck,et al.  Re‐Os Isotopic Measurements at the Femtomole Level in Natural Samples , 1997 .

[100]  P. Kelemen,et al.  A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[101]  R. Kinzler Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis , 1997 .

[102]  A. Cohen,et al.  Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry , 1996 .

[103]  L. Reisberg,et al.  Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites , 1995 .

[104]  P. Kelemen,et al.  Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels , 1995, Nature.

[105]  P. Kelemen,et al.  Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon , 1995 .

[106]  M. Roy‐Barman,et al.  187Os186Os ratios of mid-ocean ridge basalts and abyssal peridotites , 1994 .

[107]  S. Arai Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation , 1994 .

[108]  Candace E Martin Osmium isotopic characteristics of mantle-derived rocks , 1991 .

[109]  G. Witt-Eickschen,et al.  Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer , 1991 .

[110]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[111]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[112]  J. Girardeau,et al.  Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges , 1988 .

[113]  H. O’Neill,et al.  The Olivine—Orthopyroxene—Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth's Upper Mantle , 1987 .

[114]  Donald L. Turcotte,et al.  Implications of a two-component marble-cake mantle , 1986, Nature.

[115]  H. Dick,et al.  Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas , 1984 .

[116]  B. Dupré,et al.  The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere , 1981, Nature.

[117]  R. Arculus,et al.  Silica-rich spinel harzburgite residues formed by fractional hybridization-melting of the intra-oceanic supra-subduction zone mantle: New evidence from TUBAF seamount peridotites , 2021 .

[118]  Wu Fu Yarlung Zangbo ophiolite: A critical updated view , 2014 .

[119]  G. Ceuleneer,et al.  The dunitic mantle-crust transition zone in the Oman ophiolite: Residue of melt-rock interaction, cumulates from high-MgO melts, or both? , 2013 .

[120]  P. Kelemen,et al.  Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics , 2010 .

[121]  Li Yi-jun Sm-Nd ages and Nd-Sr-Pb isotope signatures of the Xiugugabu ophiolite, southwestern Tibet , 2008 .

[122]  P. Sylvester Laser Ablation-ICP-MS in the Earth Sciences CURRENT PRACTICES AND OUTSTANDING ISSUES , 2008 .

[123]  Wei Zhen-quan SHRIMP ZIRCON DATING OF DIABASE IN THE XIUGUGABU OPHIOLITE IN TIBET AND ITS GEOLOGICAL IMPLICATIONS , 2006 .

[124]  C. J. Stephens HETEROGENEITY OF OCEANIC PERIDOTITE FROM THE WESTERN CANYON WALL AT MARK : RESULTS FROM SITE 920 1 , 2006 .

[125]  M. Reid,et al.  Quantitative modeling of trace element fractionation during incongruent dynamic melting , 2001 .

[126]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[127]  E. Bonatti,et al.  Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean) , 1997 .

[128]  John F. Casey Comparison of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge , 1997 .

[129]  R. Berry,et al.  High-pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1994 .

[130]  R. Berry,et al.  High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1991 .

[131]  M. Menzies,et al.  Continental to Oceanic Mantle Transition—REE and Sr-Nd Isotopic Geochemistry of the Lanzo Lherzolite Massif , 1991 .

[132]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.