Genetic alterations in ERBB2-amplified breast carcinomas.

Amplification of the ERBB2 oncogene has recently received attention as a target for antibody-based therapies and as a predictor of response to adjuvant chemotherapy. Modification of treatment strategies based on ERBB2 status has led to further interest in the genetic alterations that accompany ERBB2 gene amplification or overexpression. In this study, chromosome alterations that are associated with ERBB2 amplification were defined by comparative genomic hybridization (CGH). Additionally, fluorescence in situ hybridization (FISH) was used to validate gene amplification, and protein expression was detected immunohistochemically. ERBB2-amplified tumors as detected by FISH, immunohistochemistry (IHC), or CGH had twice as many CGH-defined chromosomal alterations (means of 11.8, 11.0, and 12.7, respectively) as the nonamplified tumors (means of 6.8, 7.0, and 5.6, respectively). ERBB2 positivity correlated with the total number of genetic events. A wide spectrum of copy number gains and losses was seen by CGH in all of the tumors. An increased number of losses of 18q and gains of 20q was found in ERBB2-positive tumors. Other common aberrations for all of the tumors were copy number gains of 1q (58%), 8q (52%), 20q (30%), and losses of 18q (39%), 13q (39%), and 3p (33%). A high degree of concordance was observed among the three methods in 33 primary breast cancers. The concurrence for ERBB2 detection between FISH and IHC was 90%, between FISH and CGH was 82%, and between IHC and CGH was 84%. This study shows that breast tumors showing erbB2 overexpression or gene amplification are genetically distinct from erbB2-negative tumors. These differences may relate to the mechanisms underlying altered response to adjuvant therapies and may define the responsiveness to erbB2-directed immunotherapy.

[1]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[2]  G. Clark Should selection of adjuvant chemotherapy for patients with breast cancer be based on erbB-2 status? , 1998, Journal of the National Cancer Institute.

[3]  B Fisher,et al.  erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. , 1998, Journal of the National Cancer Institute.

[4]  D A Berry,et al.  erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. , 1998, Journal of the National Cancer Institute.

[5]  J. Kononen,et al.  Tissue microarrays for high-throughput molecular profiling of tumor specimens , 1998, Nature Medicine.

[6]  J Isola,et al.  Molecular cytogenetics of primary breast cancer by CGH , 1998, Genes, chromosomes & cancer.

[7]  O. Kallioniemi,et al.  Increased copy number at 17q22‐q24 by CGH in breast cancer is due to high‐level amplification of two separate regions , 1997, Genes, chromosomes & cancer.

[8]  C. Theillet,et al.  Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. , 1997, Cancer research.

[9]  D. Slamon,et al.  HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Takafumi Nishizaki,et al.  Genetic alterations in primary breast cancers and their metastases: Direct comparison using modified comparative genomic hybridization , 1997, Genes, chromosomes & cancer.

[11]  T. Carey,et al.  Evidence that loss of chromosome 18q is associated with tumor progression. , 1997, Cancer research.

[12]  P. Meltzer,et al.  Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. , 1996, Cancer research.

[13]  D. Slamon,et al.  Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. , 1996, Oncogene.

[14]  F. Waldman,et al.  ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. , 1995, Cancer research.

[15]  S. Hilsenbeck,et al.  Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. , 1995, The American journal of pathology.

[16]  P. Basset,et al.  Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. , 1995, Genomics.

[17]  P. Ravdin,et al.  The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers--a review. , 1995, Gene.

[18]  S. Devries,et al.  Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization , 1995, Genes, chromosomes & cancer.

[19]  P. Devilee,et al.  Somatic genetic changes in human breast cancer. , 1994, Biochimica et biophysica acta.

[20]  W. Kuo,et al.  Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. , 1994, Cancer research.

[21]  D. Slamon,et al.  Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. , 1994, Cancer research.

[22]  D. Berry,et al.  c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. , 1994, The New England journal of medicine.

[23]  J Piper,et al.  Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[25]  D. Pinkel,et al.  ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Devilee,et al.  Fractional allelic imbalance in human breast cancer increases with tetraploidization and chromosome loss , 1992, International journal of cancer.

[27]  T. Visakorpi,et al.  Association of C‐erbB‐2 protein over‐expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long‐term survival in breast cancer , 1991, International journal of cancer.

[28]  M. Fernö,et al.  ERBB2 amplification in breast cancer with a high rate of proliferation. , 1991, Oncogene.

[29]  W Godolphin,et al.  Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. , 1989, Science.