Frozen natural orbital coupled-cluster theory: forces and application to decomposition of nitroethane.

The frozen natural orbital (FNO) coupled-cluster method increases the speed of coupled-cluster (CC) calculations by an order of magnitude with no consequential error along a potential energy surface. This method allows the virtual space of a correlated calculation to be reduced by about half, significantly reducing the time spent performing the coupled-cluster (CC) calculation. This paper reports the derivation and implementation of analytical gradients for FNO-CC, including all orbital relaxation for both noncanonical and semicanonical perturbed orbitals. These derivatives introduce several new orbital relaxation contributions to the CC density matrices. FNO-CCSD(T) and FNO-LambdaCCSD(T) are applied to a test set of equilibrium structures, verifying that these methods are capable of reproducing geometries and vibrational frequencies accurately, as well as energies. Several decomposition pathways of nitroethane are investigated using CCSD(T) and LambdaCCSD(T) with 60% of the FNO virtual orbitals in a cc-pVTZ basis, and find differences on the order of 5 kcalmol with reordering of the transition state energies when compared to B3LYP 6-311 + G(3df, 2p).

[1]  P. Hay On the calculation of natural orbitals by perturbation theory , 1973 .

[2]  J. L. Kinsey,et al.  Stimulated emission spectroscopy: A complete set of vibrational constants for X̃ 1A1 formaldehyde , 1984 .

[3]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[4]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[5]  W. Kutzelnigg,et al.  Origin of the dimerization energy of BH3 to B2H6 , 1970 .

[6]  T. Brill Decomposition, combustion, and detonation chemistry of energetic materials : symposium held November 27-30, 1995, Boston, Massachusetts, U.S.A. , 1996 .

[7]  E. Davidson Selection of the Proper Canonical Roothaan-Hartree-Fock Orbitals for Particular Applications. I. Theory , 1972 .

[8]  R. Bartlett,et al.  Modified potentials in many-body perturbation theory , 1976 .

[9]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[10]  M. Krauss,et al.  Pseudonatural Orbitals as a Basis for the Superposition of Configurations. I. He2 , 1966 .

[11]  P. Pyykkö,et al.  ELECTRIC QUADRUPOLE MOMENT OF THE 27AL NUCLEUS : CONVERGING RESULTS FROM THE ALF AND ALCL MOLECULES AND THE AL ATOM , 1999 .

[12]  F. Illas,et al.  Inexpensive determinations of valence virtual MOs for CI calculations , 1986 .

[13]  Brian P. Prascher,et al.  Behavior of density functionals with respect to basis set. VI. Truncation of the correlation consistent basis sets. , 2007, The Journal of chemical physics.

[14]  Andrew G. Taube,et al.  Improving upon CCSD(T): LambdaCCSD(T). II. Stationary formulation and derivatives. , 2008, The Journal of chemical physics.

[15]  John F. Stanton,et al.  Restricted open-shell Hartree-Fock-based many-body perturbation theory: Theory and application of energy and gradient calculations , 1992 .

[16]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[17]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[18]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[19]  Andrew G. Taube,et al.  Frozen Natural Orbitals: Systematic Basis Set Truncation for Coupled-Cluster Theory , 2005 .

[20]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[21]  H. Nakatsuji,et al.  Elimination of singularities in molecular orbital derivatives: minimum orbital-deformation (MOD) method , 2002 .

[22]  M. Urban,et al.  Optimized virtual orbitals for correlated calculations : Towards large scale CCSD(T) calculations of molecular dipole moments and polarizabilities , 2006 .

[23]  R. Bartlett,et al.  Analytic evaluation of energy gradients at the coupled‐cluster singles and doubles level using quasi‐restricted Hartree–Fock open‐shell reference functions , 1991 .

[24]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[25]  R. Bartlett,et al.  Coupled-Cluster Methods for Molecular Calculations , 1984 .

[26]  Rodney J. Bartlett,et al.  Selection of the reduced virtual space for correlated calculations. An application to the energy and dipole moment of H2O , 1989 .

[27]  T. A. Claxton,et al.  On the ordering of modified virtual orbitals in doublet state radicals , 1984 .

[28]  Andrew G. Taube,et al.  Improving upon CCSD(T): LambdaCCSD(T). I. Potential energy surfaces. , 2008, The Journal of chemical physics.

[29]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations , 1987 .

[30]  M. Urban,et al.  Optimized virtual orbitals for relativistic calculations: an alternative approach to the basis set construction for correlation calculations , 2006 .

[31]  K. P. Lennox,et al.  Truncation of the correlation consistent basis sets: an effective approach to the reduction of computational cost? , 2004, The Journal of chemical physics.

[32]  R. Bartlett,et al.  Analytic energy gradients with frozen molecular orbitals in coupled-cluster and many-body perturbation theory methods: Systematic study of the magnitude and trends of the effects of frozen molecular orbitals , 1997 .

[33]  J. Koutecký,et al.  Usefulness of modified virtual orbitals in multireference CI procedure illustrated by calculations on lithium clusters , 1985 .

[34]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[35]  E. Davidson,et al.  NATURE OF THE CONFIGURATION-INTERACTION METHOD IN AB INITIO CALCULATIONS. I. Ne GROUND STATE. , 1970 .

[36]  John F. Stanton,et al.  INVESTIGATION OF AN ASYMMETRIC TRIPLE-EXCITATION CORRECTION FOR COUPLED-CLUSTER ENERGIES , 1998 .

[37]  I. L. Cooper,et al.  A comparative study of the convergence characteristics of modified virtual orbitals within an orbitally ordered CI expansion , 1982 .

[38]  J. L. Duncan,et al.  Infrared crystal spectra of C2H4, C2D4, and as-C2H2D2 and the general harmonic force field of ethylene , 1973 .

[39]  W. Luken,et al.  Interaction-optimized virtual orbitals, I. External double excitations , 1985 .

[40]  M L McKee,et al.  Ab initio study of rearrangements on the nitromethane potential energy surface. , 1986, Journal of the American Chemical Society.

[41]  P. Gray,et al.  Thermal decomposition of the nitroalkanes , 1955 .

[42]  J. L. Duncan,et al.  The calculation of force constants and normal coordinates—IV XH4 and XH3 molecules , 1964 .

[43]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations. II. Electric properties , 1988 .

[44]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[45]  Wenfang Hu,et al.  Theoretical Study of the CH3NO2 Unimolecular Decomposition Potential Energy Surface , 2002 .

[46]  S. Benson,et al.  Very low pressure pyrolysis. II. Decomposition of nitropropanes , 1967 .

[47]  H. Lischka,et al.  PNO-CI (pair natural-orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. , 1975 .

[48]  W. Kutzelnigg,et al.  Ab initio calculations on small hydrides including electron correlation , 1968 .

[49]  Martin Head-Gordon,et al.  Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. , 2005, The Journal of chemical physics.

[50]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[51]  N. Hush,et al.  The coupled-pair approximation in a basis of independent-pair natural orbitals , 1976 .

[52]  P. Jagodzinski,et al.  Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields , 1991 .

[53]  Monica C. Concha,et al.  Chapter 9 - Computational approaches to heats of formation , 2003 .

[54]  Ming-Chang Lin,et al.  Nitromethane−Methyl Nitrite Rearrangement: A Persistent Discrepancy between Theory and Experiment , 2003 .

[55]  R. Harrison,et al.  Analytic MBPT(2) second derivatives , 1986 .

[56]  Benjamin Mintz,et al.  Truncation of the correlation consistent basis sets: extension to third-row (Ga-Kr) molecules. , 2005, The Journal of chemical physics.

[57]  E. Davidson,et al.  An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential , 1981 .

[58]  Jeppe Olsen,et al.  Second‐order Mo/ller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self‐consistent field calculations , 1988 .

[59]  A. Dalgarno,et al.  On the perturbation theory of small disturbances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[60]  P. Neogrády,et al.  Optimized virtual orbitals for correlated calculations: an alternative approach , 2005 .

[61]  Alistair P. Rendell,et al.  Analytic gradients for coupled-cluster energies that include noniterative connected triple excitations: Application to cis- and trans-HONO , 1991 .

[62]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[63]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[64]  John F. Stanton,et al.  The accurate determination of molecular equilibrium structures , 2001 .

[65]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[66]  R. Bartlett,et al.  Modified potentials in many-body perturbation theory: Three-body and four-body contributions , 1977 .

[67]  M. Nguyen,et al.  Density functional study of the decomposition pathways of nitroethane and 2-nitropropaneElectronic supplementary information (ESI) available: The structure of minima on the PES of nitroethane (Fig. S1) and 2-nitropropane (Fig. S2). See http://www.rsc.org/suppdata/cp/b3/b300275f/ , 2003 .

[68]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[69]  Martin Head-Gordon,et al.  A local correlation model that yields intrinsically smooth potential-energy surfaces. , 2005, The Journal of chemical physics.

[70]  D. A. Ramsay,et al.  The electronic absorption spectra of NH2 and ND2 , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.