Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric cloud profiling radar system (CPRS)

This paper describes the identification of regions of ice, cloud droplets, rain, mixed-phase hydrometers, and insects in stratiform clouds using 33 and 95 GHz radar measurements of reflectivity, linear-depolarization ratio (LDR), dual-wavelength ratio, and velocity from a single-antenna radar system. First, the radar system, experiment, and data products are described. Then, regions are classified using a rule-based classifier derived primarily from LDR, velocity, and altitude. Next, a region-dependent attenuation-correction algorithm is developed to remove attenuation biases in the reflectivity estimate, and histograms of the corrected data are presented for each data product and class. The labeled regions and attenuation-corrected data are then used to train a neural net and maximum likelihood classifier. These agree with the rule-based classifier 96% and 94% of the time, respectively. Finally, the paper evaluates the importance of measuring dual-frequency parameters, velocity, and depolarization ratio.

[1]  S. M. Sekelsky,et al.  Millimeter-wave radars for remotely sensing clouds and precipitation , 1994 .

[2]  R. Gunn,et al.  THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR , 1949 .

[3]  K. Sassen,et al.  Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents , 1994 .

[4]  Richard K. Moore,et al.  Microwave remote sensing fundamentals and radiometry , 1981 .

[5]  J. W. Waters,et al.  2.3. Absorption and Emission by Atmospheric Gases , 1976 .

[6]  P. Rosenkranz Shape of the 5 mm oxygen band in the atmosphere , 1975 .

[7]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[8]  K. M. Glover,et al.  Multiwavelength backscatter from the clear atmosphere , 1966 .

[9]  Sergey Y. Matrosov,et al.  Estimation of ice cloud parameters from ground‐based infrared radiometer and radar measurements , 1992 .

[10]  R. Lhermitte Observation of rain at vertical incidence with a 94 GHz Doppler radar: An insight on Mie scattering , 1988 .

[11]  J. Mead,et al.  95-GHz Polarimetric Radar Measurements of Orographic Cap Clouds , 1994 .

[12]  T. Manabe,et al.  Millimeter-wave attenuation and delay rates due to fog/cloud conditions , 1989 .

[13]  Warner L. Ecklund,et al.  Comparison of Raindrop Size Distributions Measured by Radar Wind Profiler and by Airplane , 1993 .

[14]  Carlton W. Ulbrich,et al.  Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band , 1977 .

[15]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[16]  W. Moninger,et al.  A Millimeter-Wavelength Dual-Polarization Doppler Radar for Cloud and Precipitation Studies , 1983 .

[17]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[18]  Roger Lhermitte,et al.  A 94-GHz Doppler Radar for Cloud Observations , 1987 .

[19]  Sergey Y. Matrosov Theoretical study of radar polarization parameters obtained from cirrus clouds , 1991 .

[20]  Kenneth Sassen,et al.  Estimation of Cloud Content by W-Band Radar , 1996 .

[21]  S. M. Sekelsky,et al.  Millimeter-wave radars for remotely sensing clouds and precipitation , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[22]  Andrew J. Heymsfield,et al.  Ice crystal terminal velocities. , 1972 .

[23]  S. M. Sekelsky,et al.  Cloud observations with a polarimetric 33 GHz and 95 GHz radar , 1996 .

[24]  H. Liebe,et al.  Molecular attenuation and phase dispersion between 40 and 140-GHz for path models from different altitudes , 1973 .

[25]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[26]  J. Lacombe,et al.  Backscatter and attenuation by falling snow and rain at 96, 140, and 225 GHz , 1988 .

[27]  Kültegin Aydin,et al.  Millimeter wave scattering and propagation in rain: a computational study at 94 and 140 GHz for oblate spheroidal and spherical raindrops , 1991, IEEE Trans. Geosci. Remote. Sens..

[28]  A. H. Barrett,et al.  Microwave Spectrum of Molecular Oxygen , 1970 .

[29]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[30]  David Atlas,et al.  THE ESTIMATION OF CLOUD PARAMETERS BY RADAR , 1954 .

[31]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[32]  R. Cole,et al.  Rain-induced attenuation at 36 GHz and 110 GHz , 1978 .

[33]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[34]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[35]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[36]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[37]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[38]  Thomas B. A. Senior,et al.  Scattering by small thin dielectric particles , 1985 .

[39]  H. B. Wallace,et al.  Rain backscatter measurements at millimeter wavelengths , 1988 .

[40]  P. Hobbs,et al.  Evaluation of a 35 GHz Radar for Cloud Physics Research , 1985 .

[41]  R. Lhermitte Cloud and precipitation remote sensing at 94 GHz , 1988 .

[42]  Kültegin Aydin,et al.  Scattering from ice crystals at 94 and 220 GHz millimeter wave frequencies , 1995, IEEE Trans. Geosci. Remote. Sens..

[43]  Robert E. McIntosh,et al.  Airborne radar and in-situ observations of a shallow stratus with drizzle , 1995 .