Differential Forms Inspired Discretization for Finite Element Analysis of Inhomogeneous Waveguides (Invited Paper)

We present a difierential forms inspired discretization for variational flnite element analysis of inhomogeneous waveguides. The variational expression of the governing equation involves transverse flelds only. The conventional discretization with edge elements yields an unsolvable generalized eigenvalue problem since one of the sparse matrix is singular. Inspired by the difierential forms where the Hodge operator transforms 1-forms to 2-forms, we propose to discretize the electric and magnetic fleld with curl-conforming basis functions on the primal and dual grid, and discretize the magnetic ∞ux density and electric displacement fleld with the divergence-conforming basis functions on the primal and dual grid, respectively. The resultant eigenvalue problem is well-conditioned and easy to solve. The proposed scheme is validated by several numerical examples.

[1]  F. Teixeira,et al.  Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations , 2011, IEEE Transactions on Antennas and Propagation.

[2]  A. Buffa,et al.  A multiplicative Calderón preconditioner for the electric field integral equation , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[3]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[4]  F. Teixeira,et al.  Geometric finite element discretization of Maxwell equations in primal and dual spaces , 2005, physics/0503013.

[5]  F. Teixeira,et al.  Compatible discretizations of Maxwell equations , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[6]  F. Teixeira,et al.  On the Degrees of Freedom of Lattice Electrodynamics , 2008 .

[7]  Alain Bossavit,et al.  Generating Whitney forms of polynomial degree one and higher , 2002 .

[8]  Kaladhar Radhakrishnan,et al.  Analysis of Dielectric Waveguides and Microstrip Lines Using Krylov Subspace-Based Techniques , 2000 .

[9]  W. Chew,et al.  Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates , 1999 .

[10]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[11]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[12]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[13]  Karl F. Warnick,et al.  Teaching Electromagnetic Field Theory Using Differential Forms , 1997, Teaching Electromagnetics.

[14]  Jin-Fa Lee,et al.  Finite element analysis of lossy dielectric waveguides , 1994 .

[15]  J. J. Yang,et al.  A simple technique for calculating the propagation dispersion of multiconductor transmission lines in multilayer dielectric media , 1992 .

[16]  A. T. Galick,et al.  Iterative solution of the eigenvalue problem for a dielectric waveguide , 1992 .

[17]  Jin-Fa Lee,et al.  Full-wave analysis of dielectric waveguides using tangential vector finite elements , 1991 .

[18]  R. Collin Inhomogeneously Filled Waveguides and Dielectric Resonators , 1991 .

[19]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[20]  Fritz Arndt,et al.  Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides , 1990 .

[21]  D. Wilton,et al.  Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[22]  Weng Cho Chew,et al.  A variational analysis of anisotropic, inhomogeneous dielectric waveguides , 1989 .

[23]  W. Chew Analysis of Optical and Millimeter Wave Dielectric Waveguide , 1989 .

[24]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[25]  Fritz Arndt,et al.  Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures , 1986 .

[26]  A. Taflove,et al.  Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects , 1986 .

[27]  D. Nyquist,et al.  Integral Formulation for Analysis of Integrated Dielectric Waveguides , 1985 .

[28]  M. Koshiba,et al.  Approximate Scalar Finite-Element Analysis of Anisotropic Optical Waveguides with Off-Diagonal Elements in a Permittivity Tensor , 1984 .

[29]  W. B. Bridges,et al.  Computer Analysis of Dielectric Waveguides: A Finite-Difference Method , 1984 .

[30]  B. Rahman,et al.  Finite-Element Analysis of Optical and Microwave Waveguide Problems , 1984 .

[31]  H. Niki,et al.  Analysis of Open-Type Dielectric Waveguides by the Finite-Element Iterative Method , 1981 .

[32]  Peter D. Gianino,et al.  Modes of dielectric waveguides of arbitrary cross sectional shape , 1979 .

[33]  P. Daly,et al.  Finite-element methods for inhomogeneous waveguides , 1969 .

[34]  J. Goell A circular-harmonic computer analysis of rectangular dielectric waveguides , 1969 .

[35]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[36]  R. Collin Field theory of guided waves , 1960 .