Growth of Sobolev norms for linear Schr{\"o}dinger operators

We give an example of a linear, time-dependent, Schr{o}dinger operator with optimal growth of Sobolev norms. The construction is explicit, and relies on a comprehensive study of the linear Lowest Landau Level equation with a time-dependent potential.

[1]  E. Faou,et al.  On weakly turbulent solutions to the perturbed linear Harmonic oscillator , 2020, 2006.08206.

[2]  Laurent Thomann,et al.  Growth of Sobolev norms for coupled lowest Landau level equations , 2020, Pure and Applied Analysis.

[3]  Zhenguo Liang,et al.  1-d Quantum harmonic oscillator with time quasi-periodic quadratic perturbation: Reducibility and growth of Sobolev norms , 2020, 2003.13034.

[4]  A. Maspero,et al.  Growth of Sobolev norms in time dependent semiclassical anharmonic oscillators , 2019, Journal of Functional Analysis.

[5]  I. Nenciu,et al.  Stability and instability properties of rotating Bose–Einstein condensates , 2018, Letters in Mathematical Physics.

[6]  O. Evnin,et al.  Solvable Cubic Resonant Systems , 2018, Communications in Mathematical Physics.

[7]  A. Maspero Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations , 2018, Mathematical Research Letters.

[8]  Zhenguo Liang,et al.  Reducibility of quantum harmonic oscillator on Rd with differential and quasi-periodic in time potential , 2017, Journal of Differential Equations.

[9]  P. Gérard,et al.  On the Cubic Lowest Landau Level Equation , 2017, Archive for Rational Mechanics and Analysis.

[10]  B. Grébert,et al.  On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time potential , 2018 .

[11]  D. Robert,et al.  Growth of Sobolev norms for abstract linear Schrödinger equations , 2017, Journal of the European Mathematical Society.

[12]  B. Craps,et al.  Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates , 2017, 1705.00867.

[13]  D. Robert,et al.  Reducibility of the Quantum Harmonic Oscillator in $d$-dimensions with Polynomial Time Dependent Perturbation , 2017, 1702.05274.

[14]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2017, Communications in Mathematical Physics.

[15]  D. Robert,et al.  On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms , 2016, 1610.03359.

[16]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2016, Communications in Mathematical Physics.

[17]  B. Gr'ebert,et al.  On reducibility of Quantum Harmonic Oscillator on $\mathbb{R}^d$ with quasiperiodic in time potential , 2016, 1603.07455.

[18]  P. Germain,et al.  On the continuous resonant equation for NLS II: Statistical study , 2015, 1502.05643.

[19]  P. Germain,et al.  On the continuous resonant equation for NLS: I. Deterministic analysis , 2015, 1501.03760.

[20]  Jean-Marc Delort Growth of Sobolev Norms for Solutions of Time Dependent Schrödinger Operators with Harmonic Oscillator Potential , 2014 .

[21]  Laurent Thomann,et al.  Beating effects in cubic Schrödinger systems and growth of Sobolev norms , 2012, 1208.5680.

[22]  Kehe Zhu Analysis on Fock Spaces , 2012 .

[23]  D. Fang,et al.  On Growth of Sobolev Norms in Linear Schrödinger Equations with Time Dependent Gevrey Potential , 2012 .

[24]  B. Grébert,et al.  KAM for the Quantum Harmonic Oscillator , 2010, 1003.2793.

[25]  A. Parmeggiani Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction , 2010 .

[26]  Jean-Marc Delort Growth of Sobolev Norms of Solutions of Linear Schrödinger Equations on Some Compact Manifolds , 2009 .

[27]  Benoît Grébert,et al.  Normal Forms for Semilinear Quantum Harmonic Oscillators , 2008, 0808.0995.

[28]  S. Kuksin,et al.  On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .

[29]  W.-M. Wang Logarithmic Bounds on Sobolev Norms for Time Dependent Linear Schrödinger Equations , 2008, 0805.3771.

[30]  W.-M. Wang,et al.  Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.

[31]  F. Nier BOSE-EINSTEIN CONDENSATES IN THE LOWEST LANDAU LEVEL: HAMILTONIAN DYNAMICS , 2007 .

[32]  F. Nier,et al.  Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates , 2006 .

[33]  Guoping Zhang,et al.  Local smoothing property and Strichartz inequality for Schrodinger equations with potentials superquadratic at infinity (スペクトル・散乱理論とその周辺 研究集会報告集) , 2002 .

[34]  J. Bourgain On growth of sobolev norms in linear schrödinger equations with smooth time dependent potential , 1999 .

[35]  J. Bourgain Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential , 1999 .

[36]  E. Carlen Some integral identities and inequalities for entire functions and their application to the coherent state transform , 1991 .

[37]  D. Robert Autour de l'approximation semi-classique , 1987 .

[38]  B. Helffer Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .