The Random Projection Method for Stiff Multispecies Detonation Capturing

In this paper we extend the random projection method, proposed for general hyperbolic systems with stiff reaction terms, for underresolved numerical simulation of stiff, inviscid, multispecies detonation waves. The key idea in this method is to randomize the ignition temperatures in suitable domains. Several numerical experiments, in both one and two dimensions, demonstrate the reliability and robustness of this novel method.

[1]  Ronald Fedkiw,et al.  Regular Article: The Ghost Fluid Method for Deflagration and Detonation Discontinuities , 1999 .

[2]  Gregory J. Wilson,et al.  Computation of unsteady shock-induced combustion using logarithmic species conservation equations , 1993 .

[3]  P. Stoll,et al.  An Implicit Multigrid Method for the Simulation of Chemically Reacting Flows , 1998 .

[4]  Weizhu Bao,et al.  The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms , 2000 .

[5]  Randall J. LeVeque,et al.  A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves , 2000, SIAM J. Sci. Comput..

[6]  P. Colella,et al.  Theoretical and numerical structure for reacting shock waves , 1986 .

[7]  F. Spellman Combustion Theory , 2020 .

[8]  Alexandre J. Chorin,et al.  Random choice methods with applications to reacting gas flow , 1977 .

[9]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..

[10]  Myles A. Sussman,et al.  Source term evaluation for combustion modeling , 1993 .

[11]  Matania Ben-Artzi,et al.  The generalized Riemann problem for reactive flows , 1989 .

[12]  H. C. Yee,et al.  Numerical wave propagation in an advection equation with a nonlinear source term , 1992 .

[13]  Alexandre J. Chorin Random Choice Methods with Applications to Reacting Gas Flow , 1989 .

[14]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[15]  H. C. Yee,et al.  Semi-implicit and fully implicit shock-capturing methods for nonequilibrium flows , 1989 .

[16]  Weizhu Bao,et al.  The Random Projection Method for Stiff Detonation Waves , 2002 .

[17]  Rupert Klein,et al.  Flame Front Tracking via in-Cell Reconstruction , 1994 .

[18]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[19]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[20]  Shi Jin,et al.  The Random Projection Method for Stiff Detonation Capturing , 2001, SIAM J. Sci. Comput..

[21]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[22]  E. M. Bulewicz Combustion , 1964, Nature.

[23]  Earll M. Murman,et al.  Finite volume method for the calculation of compressible chemically reacting flows , 1985 .

[24]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[25]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[26]  E. F. Kaasschieter,et al.  Detonation capturing for stiff combustion chemistry , 1998 .

[27]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[28]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .