暂无分享,去创建一个
Raphaël M. Jungers | Vladimir V. Gusev | Julien M. Hendrickx | Pierre-Yves Chevalier | J. Hendrickx | R. Jungers | V. Gusev | P. Chevalier
[1] Mikhail V. Volkov,et al. Synchronizing Automata and the Cerny Conjecture , 2008, LATA.
[2] Vincent D. Blondel,et al. How to Decide Consensus? A Combinatorial Necessary and Sufficient Condition and a Proof that Consensus is Decidable but NP-Hard , 2012, SIAM J. Control. Optim..
[3] Vladimir V. Gusev,et al. Primitive digraphs with large exponents and slowly synchronizing automata , 2013, Journal of Mathematical Sciences.
[4] Bolian Liu,et al. Generalized exponents of primitive directed graphs , 1990, J. Graph Theory.
[5] R. Douc,et al. Comparison of asymptotic variances of inhomogeneous Markov chains with application to Markov chain Monte Carlo methods , 2013, 1307.3719.
[6] V. Protasov,et al. Sets of nonnegative matrices without positive products , 2012 .
[7] Raphaël M. Jungers,et al. Primitive sets of nonnegative matrices and synchronizing automata , 2016, SIAM J. Matrix Anal. Appl..
[8] Awi Federgruen,et al. Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods , 1987, Oper. Res..
[9] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .
[10] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices , 1963 .
[11] David Eppstein,et al. Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..
[12] I. K. Rystsov,et al. Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..
[13] Brent Heeringa,et al. Approximating Minimum Reset Sequences , 2010, CIAA.
[14] A. Paz. Graph-theoretic and algebraic characterizations of some Markov processes , 1963 .
[15] Jie Lin,et al. Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..
[16] Saib Suwilo,et al. Exponents of nonnegative matrix pairs , 2003 .
[17] David Steurer,et al. Analytical approach to parallel repetition , 2013, STOC.
[18] Vincent D. Blondel,et al. On primitivity of sets of matrices , 2015, Autom..
[19] Raphaël M. Jungers,et al. Reachability of consensus and synchronizing automata , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[20] P. FRANKL,et al. An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..
[21] Steve Kirkland,et al. Primitive digraphs with the largest scrambling index , 2009 .
[22] Attahiru Sule Alfa,et al. Two classes of time-inhomogeneous Markov chains: Analysis of the periodic case , 2008, Ann. Oper. Res..
[23] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[24] A. Paz. Definite and quasidefinite sets of stochastic matrices , 1965 .
[25] Chai Wah Wu,et al. Conditions for weak ergodicity of inhomogeneous Markov chains , 2008 .
[26] Leslie Hogben,et al. Combinatorial Matrix Theory , 2013 .
[27] T. Sarymsakov. Inhomogeneous Markov Chains , 1961 .
[28] Mariëlle Stoelinga,et al. An Introduction to Probabilistic Automata , 2002, Bull. EATCS.
[29] Karl Henrik Johansson,et al. Products of generalized stochastic Sarymsakov matrices , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[30] Vladimir V. Gusev. Lower Bounds for the Length of Reset Words in Eulerian Automata , 2013, Int. J. Found. Comput. Sci..
[31] Pawel Gawrychowski,et al. Strong Inapproximability of the Shortest Reset Word , 2014, MFCS.
[32] J. Pin. On two Combinatorial Problems Arising from Automata Theory , 1983 .
[33] R. P. Marques,et al. Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.