Sets of Stochastic Matrices with Converging Products: Bounds and Complexity

An SIA matrix is a stochastic matrix whose sequence of powers converges to a rank-one matrix. This convergence is desirable in various applications making use of stochastic matrices, such as consensus, distributed optimization and Markov chains. We study the shortest SIA products of sets of matrices. We observe that the shortest SIA product of a set of matrices is usually very short and we provide a first upper bound on the length of the shortest SIA product (if one exists) of any set of stochastic matrices. We also provide an algorithm that decides the existence of an SIA product. When particularized to automata, the problem becomes that of finding periodic synchronizing words, and we develop the consequences of our results in relation with the celebrated Cerny conjecture in automata theory. We also investigate links with the related notions of positive-column, Sarymsakov, and scrambling matrices.

[1]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[2]  Vincent D. Blondel,et al.  How to Decide Consensus? A Combinatorial Necessary and Sufficient Condition and a Proof that Consensus is Decidable but NP-Hard , 2012, SIAM J. Control. Optim..

[3]  Vladimir V. Gusev,et al.  Primitive digraphs with large exponents and slowly synchronizing automata , 2013, Journal of Mathematical Sciences.

[4]  Bolian Liu,et al.  Generalized exponents of primitive directed graphs , 1990, J. Graph Theory.

[5]  R. Douc,et al.  Comparison of asymptotic variances of inhomogeneous Markov chains with application to Markov chain Monte Carlo methods , 2013, 1307.3719.

[6]  V. Protasov,et al.  Sets of nonnegative matrices without positive products , 2012 .

[7]  Raphaël M. Jungers,et al.  Primitive sets of nonnegative matrices and synchronizing automata , 2016, SIAM J. Matrix Anal. Appl..

[8]  Awi Federgruen,et al.  Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods , 1987, Oper. Res..

[9]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[10]  J. Wolfowitz Products of indecomposable, aperiodic, stochastic matrices , 1963 .

[11]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[12]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[13]  Brent Heeringa,et al.  Approximating Minimum Reset Sequences , 2010, CIAA.

[14]  A. Paz Graph-theoretic and algebraic characterizations of some Markov processes , 1963 .

[15]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[16]  Saib Suwilo,et al.  Exponents of nonnegative matrix pairs , 2003 .

[17]  David Steurer,et al.  Analytical approach to parallel repetition , 2013, STOC.

[18]  Vincent D. Blondel,et al.  On primitivity of sets of matrices , 2015, Autom..

[19]  Raphaël M. Jungers,et al.  Reachability of consensus and synchronizing automata , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[20]  P. FRANKL,et al.  An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..

[21]  Steve Kirkland,et al.  Primitive digraphs with the largest scrambling index , 2009 .

[22]  Attahiru Sule Alfa,et al.  Two classes of time-inhomogeneous Markov chains: Analysis of the periodic case , 2008, Ann. Oper. Res..

[23]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[24]  A. Paz Definite and quasidefinite sets of stochastic matrices , 1965 .

[25]  Chai Wah Wu,et al.  Conditions for weak ergodicity of inhomogeneous Markov chains , 2008 .

[26]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .

[27]  T. Sarymsakov Inhomogeneous Markov Chains , 1961 .

[28]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[29]  Karl Henrik Johansson,et al.  Products of generalized stochastic Sarymsakov matrices , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[30]  Vladimir V. Gusev Lower Bounds for the Length of Reset Words in Eulerian Automata , 2013, Int. J. Found. Comput. Sci..

[31]  Pawel Gawrychowski,et al.  Strong Inapproximability of the Shortest Reset Word , 2014, MFCS.

[32]  J. Pin On two Combinatorial Problems Arising from Automata Theory , 1983 .

[33]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.