Characterization and modeling of granular jamming: models for mechanical design

[1]  Robert M. Jones,et al.  Stress-strain relations for materials with different moduli in tension and compression , 1977 .

[2]  AmendJohn,et al.  Soft Robotics Commercialization: Jamming Grippers from Research to Product. , 2016 .

[3]  Arianna Menciassi,et al.  STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Mariangela Manti,et al.  Stiffening in Soft Robotics: A Review of the State of the Art , 2016, IEEE Robotics & Automation Magazine.

[5]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[6]  Wissam A. Albukhanajer,et al.  Tuneable Stiffness Design of Soft Continuum Manipulator , 2015, ICIRA.

[7]  Alain Delchambre,et al.  Flexible Medical Devices: Review of Controllable Stiffness Solutions , 2017 .

[8]  Kaspar Althoefer,et al.  The granular jamming integrated actuator , 2014, 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS).

[9]  Paolo Dario,et al.  Biomedical applications of soft robotics , 2018, Nature Reviews Materials.

[10]  Pierre-Yves Hicher,et al.  Elastic Properties of Soils , 1996 .

[11]  Hakan Güneyli,et al.  Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens , 2016, Bulletin of Engineering Geology and the Environment.

[12]  Jessica Burgner-Kahrs,et al.  Stiffening Sheaths for Continuum Robots. , 2018, Soft robotics.

[13]  J. Dankelman,et al.  Vacuum packed particles as flexible endoscope guides with controllable rigidity , 2010 .

[14]  Marc Z. Miskin,et al.  Particle shape effects on the stress response of granular packings. , 2013, Soft matter.

[15]  RanzaniTommaso,et al.  Robotic Granular Jamming: Does the Membrane Matter? , 2014 .

[16]  Nadia G. Cheng,et al.  Design and analysis of jammable granular systems , 2013 .

[17]  Czesław I. Bajer,et al.  Damping properties of a beam with vacuum-packed granular damper , 2015 .

[18]  F. van Herwijnen,et al.  Vacuumatics : 3D-Formwork Systems , 2008 .

[19]  H. Jaeger Celebrating Soft Matter's 10th Anniversary: toward jamming by design. , 2015, Soft matter.

[20]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[21]  Steve G Burrow,et al.  Switchable stiffness morphing aerostructures based on granular jamming , 2019, Journal of Intelligent Material Systems and Structures.

[22]  J Dankelman,et al.  Scopes Too Flexible...and Too Stiff , 2010, IEEE Pulse.

[23]  R. Nova,et al.  A constitutive model for sand in triaxial compression , 1979 .

[24]  Jean Sulem,et al.  Comparison of extension and compression triaxial tests for dense sand and sandstone , 2008 .

[25]  Alain Delchambre,et al.  Granular Jamming as Controllable Stiffness Mechanism for Medical Devices , 2018 .

[26]  WeiYing,et al.  A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming , 2016 .

[27]  Taro Nakamura,et al.  Development of endoscopic device to veer out a latex tube with jamming by granular materials , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[28]  Kaspar Althoefer,et al.  Robotic Granular Jamming: Does the Membrane Matter? , 2014 .

[29]  Andres F. Arrieta,et al.  Variable stiffness material and structural concepts for morphing applications , 2013 .

[30]  Yu-Chong Tai,et al.  Effects of deposition temperature on Parylene-C properties , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[31]  Karl Iagnemma,et al.  Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media , 2012, 2012 IEEE International Conference on Robotics and Automation.