Blunt or Sharp Indenters: A Size Transition Analysis

The first event occurring in a glass or a ceramic material beneath a blunt punch is conical crack initiation and beneath a sharp punch is plastic deformation. These behaviors are here analyzed as punch size transition. The transition radius of the punch is determined by using the method first proposed by Kendall (1978), based on both fracture (Griffith) criterion and yield (Von Mises) criterion analyses. The effect of the punch geometry or of the punch sliding is computed. The transition radius appears then as a quantitative brittleness indicator, which also provides a mechanical definition for the sharpness or the bluntness of the punch.

[1]  I. Finnie,et al.  The ring cracking of glass by spherical indenters , 1967 .

[2]  K. Johnson,et al.  The correlation of indentation experiments , 1970 .

[3]  D. M. Marsh,et al.  Plastic flow in glass , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  I. N. Sneddon Boussinesq's problem for a flat-ended cylinder , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  T. R. Wilshaw,et al.  Quasi-static solid particle damage in brittle solids—I. Observations analysis and implications , 1976 .

[6]  D. Maugis,et al.  Fracture indentation beneath flat and spherical punches , 1985 .

[7]  A. Love The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary , 1929 .

[8]  H. Matzke Hertzian indentation of thorium dioxide, ThO2 , 1980 .

[9]  J. Routbort,et al.  Fracture-Surface Energy and Fracture Toughness of (U,Pu)C and (U,Pu(C,O) , 1983 .

[10]  G. Hamilton,et al.  Explicit Equations for the Stresses beneath a Sliding Spherical Contact , 1983 .

[11]  L. E. Goodman,et al.  The Stress Field Created by a Circular Sliding Contact , 1966 .

[12]  R. Mouginot Crack formation beneath sliding spherical punches , 1987 .

[13]  B. Lawn Partial cone crack formation in a brittle material loaded with a sliding spherical indenter , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Toughness determination of some ceramic tool materials using the method of Hertzian indentation fracture , 1985 .

[15]  B. Lawn,et al.  Brittleness as an indentation size effect , 1976 .

[16]  K. Kendall Complexities of compression failure , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  B. Lawn,et al.  Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence for an Energy Balance Explanation of Auerbach's Law , 1969 .

[18]  B. Lawn,et al.  On the theory of Hertzian fracture , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  K E Puttick,et al.  The correlation of fracture transitions , 1980 .

[20]  Hubert M. Pollock,et al.  Surface forces, deformation and adherence at metal microcontacts , 1984 .

[21]  M. Huber,et al.  Zur Theorie der Berührung fester elastischer Körper , 1904 .