Particle Swarm Optimization in the EDAs Framework

Particle Swarm Optimization (PSO) is a popular optimization technique based on swarm intelligence concepts. Estimation of Distribution Algorithms (EDAs) are a relatively new class of evolutionary algorithms which build a probabilistic model of the population dynamics and use this model to sample new individuals. Recently, the hybridization of PSO and EDAs is emerged as a new research trend. In this paper, we introduce a new hybrid approach that uses a mixture of Gaussian distributions. The obtained algorithm, called PSEDA, can be seen as an implementation of the PSO behaviour in the EDAs framework. Experiments on well known benchmark functions have been held and the performances of PSEDA are compared with those of classical PSO.

[1]  Marco Antonio Montes de Oca,et al.  An Estimation of Distribution Particle Swarm Optimization Algorithm , 2006, ANTS Workshop.

[2]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[3]  Alfredo Milani,et al.  Optimal Design of Web Information Contents for E-Commerce Applications , 2010, ISCIS.

[4]  Bassem Jarboui,et al.  Combinatorial particle swarm optimization (CPSO) for partitional clustering problem , 2007, Appl. Math. Comput..

[5]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[7]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[8]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[9]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[10]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[11]  Mohammed El-Abd,et al.  PSO_Bounds: A New Hybridization Technique of PSO and EDAs , 2009, Foundations of Computational Intelligence.

[12]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[13]  Pedro Larrañaga,et al.  EDA-PSO: A Hybrid Paradigm Combining Estimation of Distribution Algorithms and Particle Swarm Optimization , 2010, ANTS Conference.

[14]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[15]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[16]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[17]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .