3d impurities in normal and inverted perovskites: Differences are not explained by ligand field theory
暂无分享,去创建一个
[1] J. A. Aramburu,et al. Optical properties ofCr3+–doped oxides: Different behavior of two centers in alexandrite , 2006 .
[2] C. Dotzler,et al. The effect of x-ray, γ-ray, and UV radiations on the optical properties of RbCdF3:Mn2+ , 2006 .
[3] J. A. Aramburu,et al. Strong dependence of 10Dq on the metal-ligand distance: Key role played by the s-p hybridization on ligands , 2006 .
[4] M. Brik,et al. Microscopic analysis of the crystal field strength and lowest charge transfer energies in the elpasolite crystals Cs 2 NaY X 6 ( X = F , Cl , Br ) doped with Cr 3 + , 2006 .
[5] S. Korableva,et al. Optical studies of Pb2+ ions in a LiBaF3 crystal , 2006 .
[6] J. A. Aramburu,et al. Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: the influence of pressure , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.
[7] R. Niewa,et al. Inverse Perovskites (Eu3O)E with E = Sn, In – Preparation, Crystal Structures and Physical Properties , 2006 .
[8] J. A. Aramburu,et al. Optical and vibrational properties of MnF64− complexes in cubic fluoroperovskites: insight through embedding calculations using Kohn–Sham equations with constrained electron density , 2006 .
[9] U. Rogulis,et al. Optically detected magnetic resonance investigation of a luminescent oxygen–vacancy complex in Mn-doped LiBaF3 , 2006 .
[10] J. A. Aramburu,et al. Origin of the different color of ruby and emerald , 2005 .
[11] J. A. Aramburu,et al. Origin of warping in theE⊗eJahn-Teller problem: Quadratic vibronic coupling versus anharmonicity and application toNaCl:Rh2+and triangular molecules , 2005 .
[12] J. A. Aramburu,et al. Impurities in noncubic crystals: stabilization mechanisms for Jahn-Teller ions in layered perovskites. , 2004, Physical review letters.
[13] J. A. Aramburu,et al. Jahn-Teller impurities in tetragonal lattices: Why is the ligand octahedron of Cu2+ in layered perovskites compressed? , 2004 .
[14] H. Mizuseki,et al. Ab Initio Study of Divalent 3d Transition Metal Impurities in KMgF3 and BaLiF3 , 2003 .
[15] M. Mortier,et al. Electron-phonon coupling in Ni 2 + − d o p e d perovskites: KMgF 3 and BaLiF 3 , 2003 .
[16] M. Atanasov,et al. New insights into the effects of covalency on the ligand field parameters: a DFT study , 2003 .
[17] Martin Nikl,et al. Ce3+ luminescence in a LiBaF3 single crystal at low temperatures , 2002 .
[18] J. A. Aramburu,et al. Nonequivalence of chemical and hydrostatic pressures: A 1g and E g frequencies and Stokes shift of Mn 2+ -doped perovskites , 2002 .
[19] H. Vrielinck,et al. Q -band electron nuclear double-resonance detection of the cation vacancies near the cis − [ RhCl 6 ] 4 − ⋅ 2 Vac complex in NaCl , 2001 .
[20] S. Schweizer. Physics and current understanding of X-ray storage phosphors , 2001 .
[21] F. Matthias Bickelhaupt,et al. Chemistry with ADF , 2001, J. Comput. Chem..
[22] M. Marsman,et al. Structure, optical absorption, and luminescence energy calculations of Ce3+ defects in LiBaF3 , 2000 .
[23] M. Nikl. Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding , 2000 .
[24] J. A. Aramburu,et al. Local relaxation around Fe 3¿ in fluorides: Influence on electronic properties , 2000 .
[25] J. A. Aramburu,et al. LETTER TO THE EDITOR: Mn2+ impurities in fluoroperovskites: a test for theoretical calculations , 1999 .
[26] S. Baldochi,et al. Spectroscopic characterization of BaLiF3:Co2+ crystals , 1998 .
[27] M. Valerio,et al. Computer modelling of : II. Defects produced by divalent dopants , 1998 .
[28] M. Valerio,et al. An EXAFS study of the Ni dopant site in BaLiF , 1996 .
[29] M. Mortier,et al. Spectroscopic studies of Ni2+ or Cr3+-doped BaLiF3 , 1994 .
[30] Moreno,et al. Zero-phonon transitions and the Stokes shift of Mn2+-doped perovskites: Dependence on the metal-ligand distance. , 1994, Physical review. B, Condensed matter.
[31] B. Villacampa,et al. EPR and optical study of Ni2+ ions in CsCaF3 and CsCdF3 , 1994 .
[32] K. Pierloot,et al. The effect of the crystal environment on the metal–ligand interaction and the ligand field spectrum of CrF3−6 , 1992 .
[33] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[34] J. Perdew,et al. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.
[35] T. Yosida. The endor Investigations of LiBaF3: Mn2+ Having the Inverse Perovskite Structure , 1980 .
[36] J. Fayet,et al. The Fe3+-O2- pair in the diamagnetic AMF3 perovskites: A sensitive probe for EPR investigations of structural phase changes , 1977 .
[37] R. Duvarney,et al. EPR and electron-nuclear-double-resonance investigations of Fe3+ in KMgF3 , 1974 .
[38] R. Shulman,et al. Covalency Effects in KNi F 3 . III. Theoretical Studies , 1963 .
[39] S. Schweizer,et al. Optical and magneto‐optical studies of Mn‐activated LiBaF3 , 2005 .
[40] J. Spaeth,et al. ENDOR Study of Cubic Fe3+ Centres in KMgF3 , 1981 .
[41] R. Leckebusch,et al. Elastische und thermoelastische Konstanten des LiBaF3 / Elastic and Thermoelastic Constants of LiBaF3 , 1972 .