3d impurities in normal and inverted perovskites: Differences are not explained by ligand field theory

can hardly be understood within the traditional ligand field theory, which ignores the influence of the electrostatic potential VR r exerted by the rest of the lattice ions upon the localized electrons of the NiF6 4− complex. Although VR r is known to be very flat for a normal perovskite structure, it is shown that this is no longer true for an inverted perovskite. The origin of this significant difference is accounted for by simply considering, for

[1]  J. A. Aramburu,et al.  Optical properties ofCr3+–doped oxides: Different behavior of two centers in alexandrite , 2006 .

[2]  C. Dotzler,et al.  The effect of x-ray, γ-ray, and UV radiations on the optical properties of RbCdF3:Mn2+ , 2006 .

[3]  J. A. Aramburu,et al.  Strong dependence of 10Dq on the metal-ligand distance: Key role played by the s-p hybridization on ligands , 2006 .

[4]  M. Brik,et al.  Microscopic analysis of the crystal field strength and lowest charge transfer energies in the elpasolite crystals Cs 2 NaY X 6 ( X = F , Cl , Br ) doped with Cr 3 + , 2006 .

[5]  S. Korableva,et al.  Optical studies of Pb2+ ions in a LiBaF3 crystal , 2006 .

[6]  J. A. Aramburu,et al.  Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: the influence of pressure , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  R. Niewa,et al.  Inverse Perovskites (Eu3O)E with E = Sn, In – Preparation, Crystal Structures and Physical Properties , 2006 .

[8]  J. A. Aramburu,et al.  Optical and vibrational properties of MnF64− complexes in cubic fluoroperovskites: insight through embedding calculations using Kohn–Sham equations with constrained electron density , 2006 .

[9]  U. Rogulis,et al.  Optically detected magnetic resonance investigation of a luminescent oxygen–vacancy complex in Mn-doped LiBaF3 , 2006 .

[10]  J. A. Aramburu,et al.  Origin of the different color of ruby and emerald , 2005 .

[11]  J. A. Aramburu,et al.  Origin of warping in theE⊗eJahn-Teller problem: Quadratic vibronic coupling versus anharmonicity and application toNaCl:Rh2+and triangular molecules , 2005 .

[12]  J. A. Aramburu,et al.  Impurities in noncubic crystals: stabilization mechanisms for Jahn-Teller ions in layered perovskites. , 2004, Physical review letters.

[13]  J. A. Aramburu,et al.  Jahn-Teller impurities in tetragonal lattices: Why is the ligand octahedron of Cu2+ in layered perovskites compressed? , 2004 .

[14]  H. Mizuseki,et al.  Ab Initio Study of Divalent 3d Transition Metal Impurities in KMgF3 and BaLiF3 , 2003 .

[15]  M. Mortier,et al.  Electron-phonon coupling in Ni 2 + − d o p e d perovskites: KMgF 3 and BaLiF 3 , 2003 .

[16]  M. Atanasov,et al.  New insights into the effects of covalency on the ligand field parameters: a DFT study , 2003 .

[17]  Martin Nikl,et al.  Ce3+ luminescence in a LiBaF3 single crystal at low temperatures , 2002 .

[18]  J. A. Aramburu,et al.  Nonequivalence of chemical and hydrostatic pressures: A 1g and E g frequencies and Stokes shift of Mn 2+ -doped perovskites , 2002 .

[19]  H. Vrielinck,et al.  Q -band electron nuclear double-resonance detection of the cation vacancies near the cis − [ RhCl 6 ] 4 − ⋅ 2 Vac complex in NaCl , 2001 .

[20]  S. Schweizer Physics and current understanding of X-ray storage phosphors , 2001 .

[21]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[22]  M. Marsman,et al.  Structure, optical absorption, and luminescence energy calculations of Ce3+ defects in LiBaF3 , 2000 .

[23]  M. Nikl Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding , 2000 .

[24]  J. A. Aramburu,et al.  Local relaxation around Fe 3¿ in fluorides: Influence on electronic properties , 2000 .

[25]  J. A. Aramburu,et al.  LETTER TO THE EDITOR: Mn2+ impurities in fluoroperovskites: a test for theoretical calculations , 1999 .

[26]  S. Baldochi,et al.  Spectroscopic characterization of BaLiF3:Co2+ crystals , 1998 .

[27]  M. Valerio,et al.  Computer modelling of : II. Defects produced by divalent dopants , 1998 .

[28]  M. Valerio,et al.  An EXAFS study of the Ni dopant site in BaLiF , 1996 .

[29]  M. Mortier,et al.  Spectroscopic studies of Ni2+ or Cr3+-doped BaLiF3 , 1994 .

[30]  Moreno,et al.  Zero-phonon transitions and the Stokes shift of Mn2+-doped perovskites: Dependence on the metal-ligand distance. , 1994, Physical review. B, Condensed matter.

[31]  B. Villacampa,et al.  EPR and optical study of Ni2+ ions in CsCaF3 and CsCdF3 , 1994 .

[32]  K. Pierloot,et al.  The effect of the crystal environment on the metal–ligand interaction and the ligand field spectrum of CrF3−6 , 1992 .

[33]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[34]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[35]  T. Yosida The endor Investigations of LiBaF3: Mn2+ Having the Inverse Perovskite Structure , 1980 .

[36]  J. Fayet,et al.  The Fe3+-O2- pair in the diamagnetic AMF3 perovskites: A sensitive probe for EPR investigations of structural phase changes , 1977 .

[37]  R. Duvarney,et al.  EPR and electron-nuclear-double-resonance investigations of Fe3+ in KMgF3 , 1974 .

[38]  R. Shulman,et al.  Covalency Effects in KNi F 3 . III. Theoretical Studies , 1963 .

[39]  S. Schweizer,et al.  Optical and magneto‐optical studies of Mn‐activated LiBaF3 , 2005 .

[40]  J. Spaeth,et al.  ENDOR Study of Cubic Fe3+ Centres in KMgF3 , 1981 .

[41]  R. Leckebusch,et al.  Elastische und thermoelastische Konstanten des LiBaF3 / Elastic and Thermoelastic Constants of LiBaF3 , 1972 .