CONFIGURATION SPACES, BRAIDS, AND ROBOTICS

Braids are intimately related to configuration spaces of points. These configuration spaces give a useful model of autonomous agents (or robots) in an environment. Problems of relevance to autonomous engineering systems (e.g., motion planning, coordination, cooperation, assembly) are directly related to topological and geometric properties of configuration spaces, including their braid groups. These notes detail this correspondence, and explore several novel examples of configuration spaces relevant to applications in robotics. No familiarity with robotics is assumed. These notes shadow a two-hour set of tutorial talks given at the National University of Singapore, June 2007, for the IMS Program on Braids.

[1]  Mark H. Yim,et al.  Rhombic dodecahedron shape for self-assembling robots , 1997 .

[2]  Robert Ghrist,et al.  State Complexes for Metamorphic Robots , 2004, Int. J. Robotics Res..

[4]  M. Karplus,et al.  Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. , 1994, Journal of molecular biology.

[5]  D. Rus,et al.  Distributed motion planning for modular robots with unit-compressible modules , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  R. Fair,et al.  Electrowetting-based on-chip sample processing for integrated microfluidics , 2003, IEEE International Electron Devices Meeting 2003.

[7]  M. Kapovich,et al.  Moduli Spaces of Linkages and Arrangements , 1999 .

[8]  J. Trinkle,et al.  THE GEOMETRY OF CONFIGURATION SPACES FOR CLOSED CHAINS IN TWO AND THREE DIMENSIONS , 2004 .

[9]  Daniela Rus,et al.  Cellular Automata for Decentralized Control of Self-Reconfigurable Robots , 2007 .

[10]  Gregory S. Chirikjian,et al.  Kinematics of a metamorphic robotic system , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[11]  Eric Klavins,et al.  A grammatical approach to self-organizing robotic systems , 2006, IEEE Transactions on Automatic Control.

[12]  Estimates for homological dimension of configuration spaces of graphs , 2001 .

[13]  Lower Bounds for Shortest Path and Related Problems , 1987 .

[14]  Nancy M. Amato,et al.  Distributed reconfiguration of metamorphic robot chains , 2004, PODC '00.

[15]  Polygon spaces and Grassmannians , 1996, dg-ga/9602012.

[16]  Michael Farber,et al.  Topological Robotics: Subspace Arrangements and Collision Free Motion Planning , 2002, ArXiv.

[17]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[18]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[19]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[20]  Robert Ghrist Configuration spaces and braid groups on graphs in robotics , 1999 .

[21]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[22]  Frank H. Lutz,et al.  Graph coloring manifolds , 2006 .

[23]  G. Hardy,et al.  What is Mathematics? , 1942, Nature.

[24]  G. Whitesides,et al.  Fabrication of a Cylindrical Display by Patterned Assembly , 2002, Science.

[25]  Lawrence Reeves Rational subgroups of cubed $3$-manifold groups. , 1995 .

[26]  M. Kapovich,et al.  On the moduli space of polygons in the Euclidean plane , 1995 .

[27]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[28]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[29]  Martin Raussen,et al.  State spaces and dipaths up to dihomotopy , 2003 .

[30]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[31]  Ying Zhang,et al.  Distributed Control for 3D Metamorphosis , 2001, Auton. Robots.

[32]  H. King,et al.  Planar Linkages and Algebraic Sets , 1998 .

[33]  B Berger,et al.  Local rule-based theory of virus shell assembly. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Philippe Gaucher,et al.  About the globular homology of higher dimensional automata , 2000, ArXiv.

[35]  Michael Farber Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..

[36]  Jason M. O'Kane,et al.  Computing Pareto Optimal Coordinations on Roadmaps , 2005, Int. J. Robotics Res..

[37]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[38]  Javier Esparza,et al.  The mathematics of Petri Nets , 1990 .

[39]  G. Swaminathan Robot Motion Planning , 2006 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Zack J. Butler,et al.  Distributed Motion Planning for 3D Modular Robots with Unit-Compressible Modules , 2002, WAFR.

[42]  Tomas Lozano-Perez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[43]  Lior Pachter,et al.  The Mathematics of Phylogenomics , 2004, SIAM Rev..

[44]  Craig D. McGray,et al.  Self-reconfigurable molecule robots as 3D metamorphic robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[45]  A. O. Houcine On hyperbolic groups , 2006 .

[46]  Nikolai V. Ivanov,et al.  Mapping Class Groups , 2001 .

[47]  Nancy M. Amato,et al.  Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[48]  Gregory S. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996, J. Field Robotics.

[49]  Michael W. Davis Groups Generated by reflections and aspherical manifolds not covered by Euclidean space , 1983 .

[50]  Daniel S. Farley Finiteness and CAT(0) properties of diagram groups , 2003 .

[51]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[52]  Michael Farber Collision Free Motion Planning on Graphs , 2004, WAFR.

[53]  Tadeusz Januszkiewicz,et al.  Right-angled Artin groups are commensurable with right-angled Coxeter groups , 2000 .

[54]  Robert Ghrist,et al.  The geometry and topology of reconfiguration , 2007, Adv. Appl. Math..

[55]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[56]  Xiao-Song Lin,et al.  Configuration spaces and braid groups on graphs in robotics , 2001 .

[57]  Gregory S. Chirikjian,et al.  Bounds for self-reconfiguration of metamorphic robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[58]  Wei-Min Shen,et al.  CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities , 2000, Auton. Robots.

[59]  Steven M. LaValle,et al.  Nonpositive Curvature and Pareto Optimal Coordination of Robots , 2006, SIAM J. Control. Optim..

[60]  Martin Raußen,et al.  On the classification of dipaths in geometric models for concurrency , 2000, Mathematical Structures in Computer Science.

[61]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[62]  Gregory S. Chirikjian,et al.  A useful metric for modular robot motion planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[63]  Richard B. Fair,et al.  Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform , 2004, SPIE Optics East.

[64]  Daniel S. Farley,et al.  Discrete Morse theory and graph braid groups , 2004, math/0410539.

[65]  Nancy M. Amato,et al.  Concurrent metamorphosis of hexagonal robot chains into simple connected configurations , 2002, IEEE Trans. Robotics Autom..

[66]  E. Weisstein Kneser's Conjecture , 2002 .

[67]  Jeffrey C. Trinkle,et al.  Complete Path Planning for Closed Kinematic Chains with Spherical Joints , 2002, Int. J. Robotics Res..

[68]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[69]  Richard Bishop,et al.  Pursuit and Evasion in Non-convex Domains of Arbitrary Dimensions , 2006, Robotics: Science and Systems.

[70]  Daniel T. Wise,et al.  Special Cube Complexes , 2008, The Structure of Groups with a Quasiconvex Hierarchy.

[71]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[72]  Graham A. Niblo,et al.  The geometry of cube complexes and the complexity of their fundamental groups , 1998 .

[73]  Robert Ghrist,et al.  Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..

[74]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[75]  Lucas Sabalka Embedding right-angled Artin groups into graph braid groups , 2005, math/0506253.

[76]  E. Fadell,et al.  Geometry and Topology of Configuration Spaces , 2000 .

[77]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[78]  Ruth Charney,et al.  The Tits Conjecture for Locally Reducible Artin Groups , 2000, Int. J. Algebra Comput..

[79]  M. Kapovich,et al.  Universality theorems for configuration spaces of planar linkages , 1998, math/9803150.

[80]  Judith Hylton SAFE: , 1993 .

[81]  Leonidas J. Guibas Controlled Module Density Helps Reconfiguration Planning , 2000 .