Density functional simulation of spontaneous formation of vesicle in block copolymer solutions.

The author carries out numerical simulations of vesicle formation based on the density functional theory for block copolymer solutions. It is shown by solving the time evolution equations for concentrations that a polymer vesicle is spontaneously formed from the homogeneous state. The vesicle formation mechanism obtained by this simulation agrees with the results of other simulations based on the particle models as well as experiments. By changing parameters such as the volume fraction of polymers or the Flory-Huggins interaction parameter between the hydrophobic subchains and solvents, the spherical micelles, cylindrical micelles, or bilayer structures can also be obtained. The author also shows that the morphological transition dynamics of the micellar structures can be reproduced by controlling the Flory-Huggins interaction parameter.

[1]  Dla Polski,et al.  EURO , 2004 .

[2]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[3]  Density Functional Theory for Block Copolymer Melts and Blends , 2004, cond-mat/0410383.

[4]  Brisson,et al.  Functional Langevin models for the mesoscopic dynamics of surfactant aggregation in solution. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Hongwei Shen,et al.  Kinetics and Mechanism of the Rod-to-Vesicle Transition of Block Copolymer Aggregates in Dilute Solution , 1999 .

[6]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[7]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[8]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[9]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[10]  H. Frusawa A functional-integral formulation for polymer colloids: Pagonabarraga–Cates free energy revisited , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Hongwei Shen,et al.  MORPHOLOGICAL PHASE DIAGRAM FOR A TERNARY SYSTEM OF BLOCK COPOLYMER PS310-B-PAA52/DIOXANE/H2O , 1999 .

[12]  Calculation of noise distribution in mesoscopic dynamics models for phase separation of multicomponent complex fluids , 1996 .

[13]  R. Xu,et al.  Micellization of polystyrene-poly(ethylene oxide) block copolymers in water. 5. A test of the star and mean-field models , 1992 .

[14]  K. Freed,et al.  Surface properties of semi‐infinite diblock copolymer melts , 1992 .

[15]  M. Cates,et al.  Kinetic pathway of spontaneous vesicle formation , 2002 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  F. Schmid,et al.  Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends , 2005, cond-mat/0501076.

[18]  Wang,et al.  Discovering new ordered phases of block copolymers , 2000, Physical review letters.

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  Hansen,et al.  Can polymer coils Be modeled as "Soft colloids"? , 2000, Physical review letters.

[21]  C. Tanford Macromolecules , 1994, Nature.

[22]  Natasha M. Maurits,et al.  Three-dimensional simulation of hexagonal phase of a specific polymer system under shear: The dynamic density functional approach , 1998 .

[23]  Stephen Z. D. Cheng,et al.  Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer , 2001 .

[24]  N. Maurits,et al.  Application of free energy expansions to mesoscopic dynamics of copolymer melts using a Gaussian chain molecular model , 1997 .

[25]  H. Noguchi,et al.  Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Ohta,et al.  Dynamics of phase separation in copolymer-homopolymer mixtures. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  T. Hashimoto,et al.  Ordered Structures of Block Copolymer/Homopolymer Mixtures. 5. Interplay of Macro- and Microphase Transitions , 1994 .

[28]  G. Fredrickson The theory of polymer dynamics , 1996 .

[29]  F. Schmid,et al.  Dynamics of Spontaneous Vesicle Formation in Dilute Solutions of Amphiphilic Diblock Copolymers , 2006 .

[30]  S. Hyodo,et al.  Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules , 2002 .

[31]  川勝 年洋 Statistical physics of polymers : an introduction , 2004 .

[32]  Natasha M. Maurits,et al.  Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach , 1998 .

[33]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[34]  A. Bernardes Monte Carlo simulation of vesicle self-organisation , 1996 .

[35]  A. Mark,et al.  Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. , 2003, Journal of the American Chemical Society.

[36]  G. Sevink,et al.  Model for pattern formation in polymer surfactant nanodroplets , 2003 .

[37]  Natasha Maurits,et al.  Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of Dynamic Mean-Field Density Functional Theory , 1999 .

[38]  J. Schelten,et al.  Measurements of persistence length and temperature dependence of the radius of gyration in bulk atactic polystyrene , 1974 .

[39]  G. Fredrickson,et al.  Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids , 2002 .

[40]  A. Eisenberg,et al.  Control of amphiphilic block copolymer morphologies using solution conditions , 2003, The European physical journal. E, Soft matter.

[41]  Calculation of the Micellar Structure of Polymer Surfactant on the Basis of the Density Functional Theory , 2005, cond-mat/0504651.

[42]  T. Kotaka,et al.  Viscoelastic and diffusion properties of binary blends of monodisperse polystyrenes , 1987 .

[43]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[44]  Zhen‐Gang Wang,et al.  Random isotropic structures and possible glass transitions in diblock copolymer melts. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Y. Lam,et al.  Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology , 2003 .

[46]  M E Cates,et al.  Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. , 2003, Biophysical journal.

[47]  Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends , 2006, cond-mat/0609081.

[48]  Y. Oono,et al.  Spinodal decomposition in 3-space. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[50]  J. Langer,et al.  New computational method in the theory of spinodal decomposition , 1975 .

[51]  A. Khokhlov,et al.  Some problems of the statistical physics of polymer chains with volume interaction , 1978 .

[52]  M. Imada,et al.  On the Kinetic Equations for Binary Mixtures , 1978 .

[53]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[54]  Elena E. Dormidontova,et al.  Role of Competitive PEO−Water and Water−Water Hydrogen Bonding in Aqueous Solution PEO Behavior , 2002 .

[55]  D. Dean LETTER TO THE EDITOR: Langevin equation for the density of a system of interacting Langevin processes , 1996, cond-mat/9611104.

[56]  Oono,et al.  Cell dynamical system approach to block copolymers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[57]  G. Sevink,et al.  Self-Assembly of Complex Vesicles , 2005 .

[58]  Schick,et al.  Stable and unstable phases of a diblock copolymer melt. , 1994, Physical review letters.

[59]  N. Maurits,et al.  Mesoscopic dynamics of copolymer melts: From density dynamics to external potential dynamics using nonlocal kinetic coupling , 1997 .

[60]  Stephen Z. D. Cheng,et al.  Self-Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution , 2006 .

[61]  A practical density functional for polydisperse polymers , 2001, cond-mat/0104449.

[62]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[63]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[64]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[65]  Hongwei Shen,et al.  Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O , 2000 .

[66]  Andrew J. Archer,et al.  Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? , 2004, cond-mat/0405603.