A synthetic morphogenic membrane system that responds with self-organized shape changes to local light cues

Reconstitution of artificial cells capable of transducing extracellular signals into cytoskeletal changes is a challenge in synthetic biology that will reveal fundamental principles of non-equilibrium phenomena of cellular morphogenesis and information processing. Here, we generated a ‘life-like’ Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized vesicles. The biomimetic design of the light-induced signaling system embodies the operational principle of morphogen induced Rho-GTPase signal transduction in cells. Activation of synthetic signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal concentration of tubulin. The resulting membrane deformations enable the recursive coupling of the MT-aster with the signaling system, creating global self-organized morphologies that reorganize towards external light cues in dependence on prior sensory experience that is stored in the dynamically maintained morphology. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis.

[1]  T. Ueda,et al.  Artificial photosynthetic cell producing energy for protein synthesis , 2019, Nature Communications.

[2]  P. Schwille,et al.  Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations , 2018, Angewandte Chemie.

[3]  G. Koenderink,et al.  Actin–microtubule crosstalk in cell biology , 2018, Nature Reviews Molecular Cell Biology.

[4]  M. Bezanilla,et al.  Actin and microtubule cross talk mediates persistent polarized growth , 2018, The Journal of cell biology.

[5]  N. Devaraj,et al.  Communication and quorum sensing in non-living mimics of eukaryotic cells , 2018, bioRxiv.

[6]  C. Danelon,et al.  Self-replication of DNA by its encoded proteins in liposome-based synthetic cells , 2018, Nature Communications.

[7]  J. Spatz,et al.  Spherical network contraction forms microtubule asters in confinement. , 2018, Soft matter.

[8]  A. Muroyama,et al.  Microtubule organization, dynamics and functions in differentiated cells , 2017, Development.

[9]  K. Djinović-Carugo,et al.  Deciphering the BAR code of membrane modulators , 2017, Cellular and Molecular Life Sciences.

[10]  A. Koseska,et al.  Cell signaling as a cognitive process , 2017, The EMBO journal.

[11]  Christophe Danelon,et al.  Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes , 2016, PloS one.

[12]  A. Colin,et al.  Triggering signaling pathways using F-actin self-organization , 2016, Scientific Reports.

[13]  Stephan Herminghaus,et al.  Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes , 2016, The European physical journal. E, Soft matter.

[14]  F. Nédélec,et al.  Centrosome centering and decentering by microtubule network rearrangement , 2016, bioRxiv.

[15]  Ronald D. Vale,et al.  Phase separation of signaling molecules promotes T cell receptor signal transduction , 2016, Science.

[16]  A. V. Zaytsev,et al.  Bistability of a coupled Aurora B kinase-phosphatase system in cell division , 2015, eLife.

[17]  K. Guevorkian,et al.  Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell , 2015, Biophysical journal.

[18]  P. Schwille,et al.  Introducing a fluorescence-based standard to quantify protein partitioning into membranes. , 2015, Biochimica et biophysica acta.

[19]  Lukas C. Kapitein,et al.  Building the Neuronal Microtubule Cytoskeleton , 2015, Neuron.

[20]  Christian Wunder,et al.  2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs , 2015, Scientific Reports.

[21]  Mohammad Soheilypour,et al.  Buckling behavior of individual and bundled microtubules. , 2015, Biophysical journal.

[22]  G. Koenderink,et al.  Cytoskeletal crosstalk: when three different personalities team up. , 2015, Current Opinion in Cell Biology.

[23]  N J Brooks,et al.  Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. , 2015, Lab on a chip.

[24]  Brian Kuhlman,et al.  Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins , 2014, Proceedings of the National Academy of Sciences.

[25]  Alex Groisman,et al.  Cellular memory in eukaryotic chemotaxis , 2014, Proceedings of the National Academy of Sciences.

[26]  M. Steinmetz,et al.  Actin–microtubule coordination at growing microtubule ends , 2014, Nature Communications.

[27]  T. Surrey,et al.  Motor-mediated Cortical versus Astral Microtubule Organization in Lipid-monolayered Droplets , 2014, The Journal of Biological Chemistry.

[28]  Malte Schmick,et al.  KRas Localizes to the Plasma Membrane by Spatial Cycles of Solubilization, Trapping and Vesicular Transport , 2014, Cell.

[29]  Malte Schmick,et al.  The Interdependence of Membrane Shape and Cellular Signal Processing , 2014, Cell.

[30]  Laura D. Hughes,et al.  Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers , 2014, PloS one.

[31]  S. Étienne-Manneville Microtubules in cell migration. , 2013, Annual review of cell and developmental biology.

[32]  Ravi Iyengar,et al.  Decoding Information in Cell Shape , 2013, Cell.

[33]  R. Goody,et al.  Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy , 2013, Proceedings of the National Academy of Sciences.

[34]  Manuel Théry,et al.  Directed cytoskeleton self-organization. , 2012, Trends in cell biology.

[35]  Liedewij Laan,et al.  End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers , 2012, Cell cycle.

[36]  Erik S. Welf,et al.  Migrating fibroblasts reorient directionality by a metastable, PI3K-dependent mechanism , 2012, The Journal of cell biology.

[37]  P. Hordijk,et al.  Control of Rho GTPase function by BAR-domains , 2012, Small GTPases.

[38]  Melissa K. Gardner,et al.  Depolymerizing Kinesins Kip3 and MCAK Shape Cellular Microtubule Architecture by Differential Control of Catastrophe , 2011, Cell.

[39]  M. Lampson,et al.  Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient , 2011, The Journal of cell biology.

[40]  Manouk Abkarian,et al.  Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design , 2011 .

[41]  Ivo A. Telley,et al.  A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps , 2010, Cell.

[42]  Leif Dehmelt,et al.  Spatial organization of intracellular communication: insights from imaging , 2010, Nature Reviews Molecular Cell Biology.

[43]  Rainer Pepperkok,et al.  In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays , 2010, Nature Methods.

[44]  Antonio Vicino,et al.  Identifying the dynamics of complex spatio-temporal systems by spatial recurrence properties , 2010, Proceedings of the National Academy of Sciences.

[45]  Sebastian Maurer-Stroh,et al.  F-BAR domain proteins , 2010, Communicative & integrative biology.

[46]  V. Grieneisen,et al.  Dynamics of auxin patterning in plant morphogenesis - A multilevel model study , 2009 .

[47]  F. Nédélec,et al.  Effects of Confinement on the Self-Organization of Microtubules and Motors , 2009, Current Biology.

[48]  Peter J Verveer,et al.  Global analysis of time correlated single photon counting FRET-FLIM data. , 2009, Optics express.

[49]  Jürgen Kurths,et al.  Recurrence plots for the analysis of complex systems , 2009 .

[50]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[51]  Daniel A Fletcher,et al.  Unilamellar vesicle formation and encapsulation by microfluidic jetting , 2008, Proceedings of the National Academy of Sciences.

[52]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[53]  Alexandra Jilkine,et al.  Polarization and Movement of Keratocytes: A Multiscale Modelling Approach , 2006, Bulletin of mathematical biology.

[54]  Jürgen Kurths,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[55]  J. Ruderman,et al.  Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Andrea Musacchio,et al.  Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. , 2005, Molecular cell.

[57]  Jun Noritake,et al.  Regulation of microtubules in cell migration. , 2005, Trends in cell biology.

[58]  S. Étienne-Manneville Actin and Microtubules in Cell Motility: Which One is in Control? , 2004, Traffic.

[59]  Eric Karsenti,et al.  Stathmin-Tubulin Interaction Gradients in Motile and Mitotic Cells , 2004, Science.

[60]  M. Castoldi,et al.  Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. , 2003, Protein expression and purification.

[61]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[62]  Gary M. Bokoch,et al.  Regulation of leading edge microtubule and actin dynamics downstream of Rac1 , 2003, The Journal of cell biology.

[63]  C. Faivre-Moskalenko,et al.  Dynamics of microtubule asters in microfabricated chambers: The role of catastrophes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A. Hall,et al.  Rho GTPases in cell biology , 2002, Nature.

[65]  S. Leibler,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001, Science.

[66]  A. Hall,et al.  Rac/Cdc42 and p65PAK Regulate the Microtubule-destabilizing Protein Stathmin through Phosphorylation at Serine 16* , 2001, The Journal of Biological Chemistry.

[67]  E. Kunkel,et al.  Integrating Conflicting Chemotactic Signals , 1999, The Journal of cell biology.

[68]  E. Salmon,et al.  Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts , 1999, Nature Cell Biology.

[69]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[70]  Tobias Meyer,et al.  Protein Kinase C as a Molecular Machine for Decoding Calcium and Diacylglycerol Signals , 1998, Cell.

[71]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[72]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[73]  L. Lim,et al.  A Novel Serine/Threonine Kinase Binding the Ras-related RhoA GTPase Which Translocates the Kinase to Peripheral Membranes (*) , 1995, The Journal of Biological Chemistry.

[74]  L. Lim,et al.  A brain serine/threonine protein kinase activated by Cdc42 and Rac1 , 1994, Nature.

[75]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[76]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[77]  J. Lüders,et al.  The Microtubule Cytoskeleton , 2016, Springer Vienna.

[78]  I. A. Telley,et al.  Fluorescence microscopy assays on chemically functionalized surfaces for quantitative imaging of microtubule, motor, and +TIP dynamics. , 2010, Methods in cell biology.

[79]  B. Sawyer,et al.  Knowledge makes the money go round : building a financial services market place , 2004 .

[80]  Sean B. Carroll,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001 .

[81]  B. Howell,et al.  Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. , 1999, Molecular biology of the cell.

[82]  M. Bornens,et al.  Studying the composition and function of centrosomes in vertebrates. , 1999, Methods in cell biology.

[83]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[84]  A. Hyman,et al.  Preparation of modified tubulins. , 1991, Methods in enzymology.