Laser optogalvanic study of HCO Ã state predissociation

Widths of lines in the (0, 90, 0)–(0, 01, 0) band of the HCO ? 2A\–? 2A′ transition are recorded using a single‐mode dye laser, revealing a strong dependence on the rotational quantum number N. The HCO radical is produced in a radio frequency discharge in acetaldehyde (CH3CHO) vapor and the ?–? transition in the 570–630 nm region is detected by laser‐induced changes in the discharge impedance. The variation of widths with N is interpreted in terms of Coriolis interaction and K‐type resonance of the (0, 90, 0)Σ(K′ = 0) level with nearby strongly predissociated Π(K′ = 1) and Δ(K′ = 2) levels, respectively, of the upper state.

[1]  T. Suzuki,et al.  Optogalvanic spectroscopy with rf discharge , 1981 .

[2]  A. Schawlow,et al.  Doppler-free radiofrequency optogalvanic spectroscopy , 1981 .

[3]  J. Destombes,et al.  Optogalvanic spectrum of molecular iodine , 1981 .

[4]  C. Rettner,et al.  Laser Optogalvanic Effect in a Pure Iodine Discharge , 1981 .

[5]  G. Atkinson,et al.  Wavelength dependence of HCO formation in the photolysis of acetaldehyde , 1979 .

[6]  D. Feldmann Opto-galvanic spectroscopy of some molecules in discharges: NH2, NO2, H2 and N2 , 1979 .

[7]  W. Mallard,et al.  Absorption spectra of metal oxides using optogalvanic spectroscopy , 1978 .

[8]  Jonathan E. Clark,et al.  HCO production, vibrational relaxation, chemical kinetics, and spectroscopy following laser photolysis of formaldehyde , 1978 .

[9]  M. Jacox Assignment of the hydrocarbon flame bands. The CX transition of HCO , 1978 .

[10]  J. Reilly,et al.  HCO radical kinetics: Conjunction of laser photolysis and intracavity dye laser spectroscopy , 1978 .

[11]  John M. Brown,et al.  Microwave spectroscopy of nonlinear free radicals III. High field Zeeman effect in HCO and DCO , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  A. J. Merer,et al.  Infrared spectroscopy of short-lived molecules: Observation of the ν2 fundamental of HCO by laser electric resonance , 1977 .

[13]  J. Brown,et al.  A microwave determination of some molecular parameters for HCO , 1977 .

[14]  John M. Brown,et al.  Infra-red laser magnetic resonance detection of vibration-rotation transitions in NH2 and HCO , 1977 .

[15]  R. Curl,et al.  Laser magnetic resonance spectrum of HCO on the D2O 108 μ laser line , 1976 .

[16]  J. Brown,et al.  Axis Switching in the Transition of HCO: Determination of Molecular Geometry , 1975 .

[17]  G. Lycett,et al.  Microwave spectroscopy of non-linear free radicals II. Zeeman effect studies of DCO , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  J. Brown,et al.  Microwave spectroscopy of nonlinear free radicals - I. General theory and application to the Zeeman effect in HCO , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  S. Saito Laboratory Observations of the 1_{01}<-0_{00} Transitions for the HCO and DCO Free Radicals by Microwave Spectroscopy , 1972 .

[20]  J. Brown,et al.  Microwave Spectrum of the HCO Free Radical , 1971 .

[21]  R. Holmberg ESR Study of HĊO in Single Crystals of Formic Acid at 77°K , 1969 .

[22]  D. E. Milligan,et al.  Matrix‐Isolation Study of the Infrared and Ultraviolet Spectra of the Free Radical HCO. The Hydrocarbon Flame Bands , 1969 .

[23]  J. Ogilvie The vibrational fundamentals and structure of triatomic radicals formed by photolytic hydrogen-atom reactions: formyl, nitrosyl hydride and hydroperoxyl☆ , 1967 .

[24]  E. Cochran,et al.  13C Hyperfine Splittings in the Electron Spin Resonance Spectra of HCO and FCO , 1966 .

[25]  J. Johns K-Type doubling of linear molecules in 1π electronic states , 1965 .

[26]  D. E. Milligan,et al.  Infrared Spectrum of HCO , 1964 .

[27]  E. Cochran,et al.  ESR Spectrum and Structure of the Formyl Radical , 1962 .

[28]  G. Ewing,et al.  Infrared Detection of the Formyl Radical HCO , 1960 .

[29]  H. C. Longuet-Higgins,et al.  Theory of the Renner effect in the NH2 radical , 1958 .

[30]  G. Herzberg,et al.  The 7500 to 4500 Å absorption system of the free HCO radical , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  D. Ramsay Absorption Spectrum of Free HCO Radicals , 1952 .

[32]  W. Vaidya Isotope Effect in Hydrocarbon Flame Bands , 1951 .

[33]  John M. Brown,et al.  The laser magnetic resonance spectrum of the HCO radical at 5.3 μm , 1980 .

[34]  J. Johns,et al.  Laser magnetic resonance spectroscopy of the ν2 fundamental band of HCO at 9.25 μm , 1977 .

[35]  D. Levy,et al.  Microwave spectrum of the HCO radical , 1974 .

[36]  R. Dixon Rotational structure of some hydrocarbon flame bands , 1969 .

[37]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .

[38]  I. Mills Coriolis interactions, intensity perturbations and potential functions in polyatomic molecules , 1965 .

[39]  J. Johns,et al.  Electronic absorption spectra of HCO and DCO radicals , 1963 .

[40]  D. W. G. Style,et al.  Radical spectra in fluorescence , 1947 .