A general science-based framework for dynamical spatio-temporal models

Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e.g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography.

[1]  Harold Hotelling,et al.  Differential Equations Subject to Error, and Population Estimates , 1927 .

[2]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[3]  W. Ricker Stock and Recruitment , 1954 .

[4]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[5]  V. Heine MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES , 1955 .

[6]  D. Cox Note on Grouping , 1957 .

[7]  F. David,et al.  On the Dynamics of Exploited Fish Populations , 1959, Fish & Fisheries Series.

[8]  P. Whittle,et al.  Topographic correlation, power-law covariance functions, and diffusion , 1962 .

[9]  Hugh G. Campbell Matrices With Applications , 1968 .

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[11]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[12]  J. Holton An introduction to dynamic meteorology , 2004 .

[13]  H. Künsch Gaussian Markov random fields , 1979 .

[14]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[15]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[16]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[17]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[18]  D. Rubin,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[19]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[20]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[21]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[22]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[23]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[24]  S. George Philander,et al.  Geophysical Interplays. (Book Reviews: El Nino, La Nina, and the Southern Oscillation.) , 1990 .

[25]  P. Krishna Rao,et al.  Sea Surface Temperature , 1990 .

[26]  L. Fahrmeir,et al.  On kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression , 1991 .

[27]  L. Fahrmeir Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .

[28]  M. Kot,et al.  Discrete-time travelling waves: Ecological examples , 1992, Journal of mathematical biology.

[29]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[30]  Cécile Penland,et al.  Prediction of Nino 3 sea surface temperatures using linear inverse modeling , 1993 .

[31]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[32]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[33]  M. Voltz,et al.  Geostatistical Interpolation of Curves: A Case Study in Soil Science , 1993 .

[34]  R. Beverton,et al.  On the dynamics of exploited fish populations , 1993, Reviews in Fish Biology and Fisheries.

[35]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[36]  James P. Hughes,et al.  A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .

[37]  A. Soares,et al.  Geostatistics Tróia '92 , 1993 .

[38]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[39]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[40]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[41]  Christopher K. Wikle,et al.  Spatio-temporal statistical models with applications to atmospheric processes , 1996 .

[42]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[43]  L. Mark Berliner,et al.  Hierarchical Bayesian Time Series Models , 1996 .

[44]  A. Hastings Population Biology: Concepts and Models , 1996 .

[45]  Ronald P. Barry,et al.  Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .

[46]  N. Cressie,et al.  Spatio-temporal prediction of snow water equivalent using the Kalman filter , 1996 .

[47]  Timothy G. Gregoire,et al.  Modelling Longitudinal and Spatially Correlated Data , 1997 .

[48]  Min Zhong,et al.  El Niño, La Niña, and the Nonlinearity of Their Teleconnections , 1997 .

[49]  Richard H. Jones,et al.  Models for Continuous Stationary Space-Time Processes , 1997 .

[50]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[51]  F. Tangang,et al.  Forecasting ENSO Events: A Neural Network–Extended EOF Approach. , 1998 .

[52]  Peter E. Rossi,et al.  Case Studies in Bayesian Statistics , 1998 .

[53]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[54]  D. Gamerman Markov chain Monte Carlo for dynamic generalised linear models , 1998 .

[55]  F. J. Alonso,et al.  The Kriged Kalman filter , 1998 .

[56]  Peter C. Young,et al.  Nonlinear and Nonstationary Signal Processing , 1998, Technometrics.

[57]  A. Barnston,et al.  Predictive Skill of Statistical and Dynamical Climate Models in SST Forecasts during the 1997-98 El Niño Episode and the 1998 La Niña Onset. , 1999 .

[58]  David B. Stephenson,et al.  The “normality” of El Niño , 1999 .

[59]  J. Andrew Royle,et al.  A hierarchical approach to multivariate spatial modeling and prediction , 1999 .

[60]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[61]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[62]  B. Sansó,et al.  Venezuelan Rainfall Data Analysed by Using a Bayesian Space–time Model , 1999 .

[63]  P. Brown,et al.  Blur‐generated non‐separable space–time models , 2000 .

[64]  A. Frigessi,et al.  Stationary space-time Gaussian fields and their time autoregressive representation , 2002 .

[65]  Noel A Cressie,et al.  Long-Lead Prediction of Pacific SSTs via Bayesian Dynamic Modeling , 2000 .

[66]  William W. Hsieh,et al.  Skill Comparisons between Neural Networks and Canonical Correlation Analysis in Predicting the Equatorial Pacific Sea Surface Temperatures , 2000 .

[67]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[68]  Axel Timmermann,et al.  Empirical Dynamical System Modeling of ENSO Using Nonlinear Inverse Techniques , 2001 .

[69]  Jonathan R. Stroud,et al.  Dynamic models for spatiotemporal data , 2001 .

[70]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[71]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[72]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[73]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[74]  C. Wikle Spatial Modelling of Count Data: A Case Study in Modelling Breeding Bird Survey Data on Large Spatial Domains , 2002 .

[75]  C. Wikle A kernel-based spectral model for non-Gaussian spatio-temporal processes , 2002 .

[76]  Andrew B. Lawson,et al.  Spatial cluster modelling , 2002 .

[77]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[78]  D. Higdon,et al.  Exploring Space-Time Structure in Ozone Concentration Using a Dynamic Process Convolution Model , 2002 .

[79]  Jianqing Fan Nonlinear Time Series , 2003 .

[80]  L. Mark Berliner,et al.  Hierarchical Bayesian Approach to Boundary Value Problems with Stochastic Boundary Conditions , 2003 .

[81]  L. Mark Berliner,et al.  Physical‐statistical modeling in geophysics , 2003 .

[82]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[83]  C. F. Sirmans,et al.  Spatial Modeling With Spatially Varying Coefficient Processes , 2003 .

[84]  L. Mark Berliner,et al.  Bayesian hierarchical modeling of air-sea interaction , 2003 .

[85]  Chunsheng Ma,et al.  Families of spatio-temporal stationary covariance models , 2003 .

[86]  Mike K. P. So POSTERIOR MODE ESTIMATION FOR NONLINEAR AND NON-GAUSSIAN STATE SPACE MODELS , 2003 .

[87]  Nan-Jung Hsu,et al.  Modeling transport effects on ground‐level ozone using a non‐stationary space–time model , 2004 .

[88]  David Higdon,et al.  A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.

[89]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[90]  Marc G. Genton,et al.  Predictive spatio-temporal models for spatially sparse environmental data , 2005 .

[91]  Alan E. Gelfand,et al.  Spatial process modelling for univariate and multivariate dynamic spatial data , 2005 .

[92]  Ke Xu,et al.  A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities , 2005 .

[93]  M. Stein Space–Time Covariance Functions , 2005 .

[94]  L. Mark Berliner,et al.  Combining Information Across Spatial Scales , 2005, Technometrics.

[95]  Michael Ghil,et al.  A Hierarchy of Data-Based ENSO Models , 2005 .

[96]  J. Andrew Royle,et al.  Efficient statistical mapping of avian count data , 2005, Environmental and Ecological Statistics.

[97]  Murat Kulahci,et al.  Quality Quandaries: Interpretation of Time Series Models , 2005 .

[98]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[99]  Juha Karhunen,et al.  State Inference in Variational Bayesian Nonlinear State-Space Models , 2006, ICA.

[100]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[101]  Gardar Johannesson,et al.  Dynamic multi-resolution spatial models , 2007, Environmental and Ecological Statistics.

[102]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[103]  J. Andrew Royle,et al.  Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions , 2007, Biometrics.

[104]  Bruno Sansó,et al.  Dynamic Models for Spatio-Temporal Data , 2007 .

[105]  Christopher K. Wikle,et al.  Estimation of Parameterized Spatio-Temporal Dynamic Models , 2007 .

[106]  Mevin B. Hooten,et al.  A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove , 2008, Environmental and Ecological Statistics.

[107]  S. Koopman,et al.  Monte Carlo estimation for nonlinear non-Gaussian state space models , 2007 .

[108]  Christopher J. Paciorek,et al.  Computational techniques for spatial logistic regression with large data sets , 2007, Comput. Stat. Data Anal..

[109]  Mevin B. Hooten,et al.  Shifts in the spatio-temporal growth dynamics of shortleaf pine , 2007, Environmental and Ecological Statistics.

[110]  Li Chen,et al.  A class of nonseparable and nonstationary spatial temporal covariance functions , 2008, Environmetrics.

[111]  Natasha Flyer,et al.  Interpolating fields of carbon monoxide data using a hybrid statistical-physical model , 2009, 0901.3670.

[112]  Catherine A. Calder,et al.  A dynamic process convolution approach to modeling ambient particulate matter concentrations , 2008 .

[113]  Mrinal K. Sen,et al.  Computational methods for parameter estimation in climate models , 2008 .

[114]  Jorge Mateu,et al.  Statistics for spatial functional data , 2008 .

[115]  D. Gamerman,et al.  Spatial dynamic factor analysis , 2008 .

[116]  Jorge Mateu,et al.  On potentially negative space time covariances obtained as sum of products of marginal ones , 2008 .

[117]  A. M. Schmidt,et al.  Bayesian spatio‐temporal models based on discrete convolutions , 2008 .

[118]  Visakan Kadirkamanathan,et al.  Estimation and Model Selection for an IDE-Based Spatio-Temporal Model , 2009, IEEE Transactions on Signal Processing.

[119]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[120]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[121]  Mevin B Hooten,et al.  Models for Bounded Systems with Continuous Dynamics , 2009, Biometrics.

[122]  Tapani Raiko,et al.  Variational Bayesian learning of nonlinear hidden state-space models for model predictive control , 2009, Neurocomputing.

[123]  Emilio Porcu,et al.  Space-time covariance functions with compact support , 2009 .

[124]  Visakan Kadirkamanathan,et al.  Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation , 2009, IEEE Transactions on Signal Processing.

[125]  B. Sansó,et al.  A Spatio-Temporal Model for Mean, Anomaly, and Trend Fields of North Atlantic Sea Surface Temperature , 2009 .

[126]  Jorge Mateu,et al.  Statistics for spatial functional data: some recent contributions , 2009 .

[127]  Joseph B. Kadane,et al.  Error analysis for small angle neutron scattering datasets using Bayesian inference , 2010 .

[128]  Cliburn Chan,et al.  Selection Sampling from Large Data Sets for Targeted Inference in Mixture Modeling. , 2010, Bayesian analysis.

[129]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[130]  Jorge Mateu,et al.  Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application , 2010 .

[131]  N. Cressie,et al.  Fixed Rank Filtering for Spatio-Temporal Data , 2010 .

[132]  Jarad NIEMI,et al.  Adaptive Mixture Modeling Metropolis Methods for Bayesian Analysis of Nonlinear State-Space Models , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[133]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[134]  C. Fox,et al.  A general purpose sampling algorithm for continuous distributions (the t-walk) , 2010 .

[135]  Colin Fox,et al.  Posterior Exploration for Computationally Intensive Forward Models , 2011 .